Linkoping Studies in Science and Technology Dissertations
No 14

A PROGRAM
MANIPULATION SYSTEM
BASED ON
PARTIAL EVALUATION

by Anders Haraldsson

Department of Mathematics
Linkoping University, S-581 83 Linkoping, Sweden
Linképing 1977



Linképing Studies in Science and Technology Dissertations
No 14

A PROGRAM
MANIPULATION SYSTEM
BASED ON
PARTIAL EVALUATION

by Anders Haraldsson

Akademisk avhandling
som for aviaggande av filosofisk doktorsexamen
kommer att offentligt forsvaras
i larosal BDL 6, hus B, Valla
fredagen den 27 maj 1977 kl 10.15.



Linkdping Studles in Science and Technology Dissertations
No 14

A PROGRAM
MANIPULATION SYSTEM
BASED ON
PARTIAL EVALUATION

by Anders Haraldsson

\‘gﬂ:T 1y o,
& ,
P ’z
J z
k> Gy, &
ING U

Department of Mathematics
Link6ping University, S-581 83 Linképing, Sweden
Linkdping 1977



ISBN 91-7372-144-1

Vimmerby Tidnings Tryckeri 1977



ABSTRACT

Prcgram manipulation is the task to perform transformations
on program code, and is normally done in order to optimize
the code with respect of the utilization of some computer
resource. Partial evaluation is the task when partial
computations can be performed in a program before it is
actually executed. If a parameter to a procedure is constanc
a specialized version of that procedure can be generated if
the constant is inserted instead of the parameter in the
procedure body and as much computations in the code as

possible are performed.

A system is described which works on programs written in
INTERLISP, and which performs partial evaluation together

with other transformations such as beta-expansion and certain
other optimization operations. The system works on full LISP
and not only for a "pure" LISP dialect, and deals with
problems occurring there involving side-effects, variable
assignments etc. An analysis of a previous system, REDFUN,
results in a list of prcblems, desired extensions and new
features. This is used as a basis for a new design, resulting
in a new implementation, REDFUN-2. This implementation, design
considerations, constraints in the system, remaining problems,
and other experience from the development and experiments

with the system are reported in this paper.

Key-words: program manipulation, partial evaluation, program

optimization, LISP, beta-expansion, macro-expansion
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1. INTRODUCTION

This thesis describes a system, called REDFUN-2, which per-
forms partial evaluation, beta-expansion (opening of functions)
and other operations on program code written in the LISP
language. The system is based on an older version, the REDFUN
program, and the experience from a number of experiments with
that system. This has been reported in "A Partial Evaluator
and its Use as a Programming Tool" (BEC76). For those who

want to penetrate this thesis in depth it is recomended first
to read that report, which in more detail gives the background
and the underlying ideas for this project, although some of

it is also found in chapter 4 in this report.

Chapter 2 gives an overview of program manipulation and re-
lated tasks which we think can be done by such systems. It
includes a survey of related work. It also introduces the con-

cept partial evaluation.

Chapter 3 gives a model which describes the development of
the REDFUN-project as a design iteration process and gives

some background of the old work.

Chapter 4 is a recapitulation of what was said about the
REDFUN system in the report mentioned alrove. For the reader
who is acquainted with the report the first section can be

skipped.

Chapter 5 gives a list of the new proposed features and ex-
tensions to be included in the new version called REDFUN-2,

and the design considerations taken to implement them.
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Chapter 6 is a rather detailed description of the actual im-
plementation of the system. This part can be skipped by those
who are not really interested in the details of the new im-
plementation.

Chapter 7 describes the use of partial evaluation as a tool to
perform macro expansion. The new system is tested on a real
program, an implementation of the iterative statement found in
CLISP. From a very general program which executes all variants
of statements, a specialized version, directly corrsponding

to a given iterative statement, can be generated.

Chapter 8 gives an evaluation of the REDFUN-2 system and a
summary of the experience gained from this work and gives some

directions on further work with this system.

Appendix I gives an example from the PCDB-application which

illustrates the partial evaluation techique when functions are
opened on several levels. This example is recommended for those
who want to get an idea of how partial evaluation works applied

to a real example.

Appendix II gives an example of how contexts (see 6.12) are
changed during the reduction of an expression.

Appendix III shows some examples of how map-functions can be
treated in order to automatically generate different versions
of them.

Appendix IV gives the LISP code for the executor in the iter-
ative statement and shows a number of examples run through the
REDFUN-2 system.

Appendix V gives the LISP code for some of the central functions
in the REDFUN-2 system and give some examples of simplifications

rules used by the system.
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Appendix VI gives the output from some examples from chapter 6
run through the system.

To read this report one needs to have a rather good knowledge
about LISP. If you have not, we think only sections 2 and 3
and some of the examples in the appendices are readable and
understandable.

Some of the examples in the text are such that no programmer
will ever write such code. The reader may wonder why bother
about them. However, the main purpose of this system is not to
reduce manually written code, but to reduce code which appears
when code is either automatically generated or has previously
been manipulated, for example when functions have been opened.
In such situations it is necessary also to consider such odd

cases.

The implementation of REDFUN-2 was first done on INTERLISP/360-
370 (INT75) at Uppsala Datacentral, but the program has recently
been moved to INTERLISP/20 on the DEC-20 at Informatics
laboratory at Linkdpings University. The system works on pro-
grams written in the INTERLISP/360-370 dialect, although only
minor changes would be necessary to take care of code written

in the INTERLISP/20 dialect.
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PROGRAM MANIPULATION AND PARTIAL EVALUATION

1 PROGRAM MANIPULATION

By program manipulation we mean the task of performing various

operations on program code in order to modify it in some way.

This includes

compilation of program code to machine code.

translating by a preprocessor of, for example, a more prob-
lem-oriented notation to program code.

translating a program from one dialect to another.

macro expansion, normally done on assembly code level, but
which can also be done on high level code.

beta-expansion or opening of procedures, replacing a nroce-
dure call by the procedure definition, in which formal arcu-
ments are substituted for actual ones.

optimization of a program to make it more efficient. Examnles
of such optimization transformations are recursion removal,
removal of invariant expressions from a loon, combining loops
etc.

propagation of variables to replace a variable by a constant.
partial evaluation where as much calculation and simpli-
fication in the code as is possible is done before running
it. This can be done if for example we know the value of the
predicate in an if-statement, in which case the if-state-
ment can be replaced by either the true or the false branch
of the statement. This is particularly useful together with

opening of procedures and propagation of variables.
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Most work has been concentrated on optimizing program code

in compilers and in Allen and Cocke (ALL72) a catalog of such
optimization transformations can be found. During recent years,
however, a growing interest has started, especially with re-
gard to research, in performing other kinds of program mani-

pulation.

2.2 MANIPULATION OF SOURCE CODE.

Our primary interest is manipulation on the source code level,
so technigues for compiling and optimization by compilers will
not be discussed in this text. We consider that it is much
more difficult to make reliable compilers if too many trans-
formations and optimizations are done in the compilation step.
It is normally impossible for the typical user to know when
and where optimizations have been performed in the code. Some
serious bugs have been introduced by erroneous optimizations,
e.g. when subexpressions in loops, containing side-effects,
have been moved outside the loop. If these transformations
were done on the source code level it could give the user a
better chance to see and understand what transformations had

been done.

A common feature of all program manipulation programs is that
they process other programs. This means that programs must be
represented in the computer in a form which can be manipulated.
For this reason it is an advantage to work in a language where
we have program and data equivalence such as LISP, so from
this point we are mostly concerned with program manipulation
in a LISP environment, especially the INTERLISP (TEI74) dia-
lect. Some of the results here are also applicable to conven-
tional languages, but some of the more interesting methods are
however more difficult to realize in such languages. Implemen-
ting a partial evaluator, where we need an interpreter for the

language, is not as easy there.
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Some interesting areas where we can find the need for pro-

gram manipulation on the source code level are listed below.

- To be used during program development. During the last years
new methods of developing programs have been intensively
discussed. We have structured programming (DIJ70) and step-
wise program refinement (WIR71) among similar ideas. The
programs must be wellstructured and developed in a more
systematic way, reflecting the problem and the algorithms
better than before. Smart coding and other tricks are
prohibited. A program developed in this way will however
not always meet its operational requirements, it must be
more efficient. After the program has been finally tested
it must go through an optimizing phase. A way of performing
this could be to let the programmer in dialog with an
optimizer supply information about the program and the
optimizer which transformations may suitably be performed.
The user could state what special cases can occur in the
program, the properties of the data and other information

from the application and computer environment.

- To be used in a step before compilation. Instead of com-
plicating the compiler by making it smarter much can be
done on the source code level before the compilation. Macro
expansion and recursion removal are such transformations

which today are carried out by the INTERLISP compiler.

- To be used when translating programs from one dialect to
another. It ought to be possible to describe the differences
between the dialects in some way and let the translation be

made more or less automatically.
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- To be used when programs are generated automatically. It
seems easier first to generate a more stereotyped version
of a program, ofter not efficient, and in a second step
optimize it. The generator will then often be more clearly

written and easier to maintain.

- To be used in a "smart" editor, where the user has at his
disposal more advanced commands like "substitute the vari-
able x hy the constant 5 and carry out all the simplifi-

cations which are now possible”.

- To be used when specializing a general program. Suppose that
in an application we want to run a highly parametized pro-
gram several times with the same parameters set to the same
constant values each time. We would then like to extract
from the general program a specialized version which could
be run more efficiently in this application. This can in

some cases be nicely done by partial evaluation.
This list can be extended with more areas, but it reflects
some of the ideas we have had in mind throughout our work in

the area of program manipulation.

2.3 PROGRAM ANALYSIS

Closely related to program manipulation is program analysis,

where we are interested in extracting information from the pro-
gram. A performance analysis is desirable and tells where in
the program optimization is necessary. Analysis of program
flow, variable scope, side-effects etc. must often be per-
formed before a transformation is allowed to take place. An
invariant subexpression with side-effects is not normally
allowed to be removed from a loop. It is of course also use-
ful to perform program analysis when programs have to be

documented.
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2.4 \PROGRAM MANIPULATION SYSTEM

One way to go ahead is to write one program manipulation pro-
gram (PMP) or program analysis program (PAP) for every apoli-
cation. The disadvantage of this is that we shall duplicate a
lot of work. All PMP's and PAP's must know how to scan the
program code, in this case LISP code and must know the
semantic properties of special functions, such as cond and
selectqg and. other special functions defined by the user.
Different manipulation tasks need the same basic transfor-
mations and analysis to be performed. Two differently written
PMP's or PAP's will probably have different conventions, so

it may be impossible to run them together.

This leads us to the conclusion that it would be desirable to

have a more integrated program manipulation system (PMS),

which contains the basic tools to perform analysis and mani-
pulation of programs. This is an analogy to all the formula
manipulation systems which have been developed during the

last ten years.

Knuth (KNU74) describes in an article on structured programming
the need for such a system. In his enthusiasm he writes:
"The programmer using such a system will write his beauti-
fullystructured, but possibly inefficient, program; then
he will interactively specify transformations that make it
efficient. Such a system will be much more powerful and re-
liable than a completely automatic one. We can also imagine
the system manipulation measurement statistics concerning
how much of the total running time is spent in each state-
ment, since the programmer wants to know which parts of his
program deserve to be optimized, and how much effect an

optimization will really have.
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The original program P should be retained along with the
transformation specifications, so that it can be pronerly
understood and maintained as time passes. As I say, this
idea certainly isn't my own; it is so exciting I hope that

everyone soon becomes aware of its possibilities.”
So it is clear that it is an important task to try to con-
struct program manipulation systems and to learn more about

program transformations, both in theory and practice.

2.5 PARTIAL EVALUATION

Partial evaluation is a technique, which in its simplest case

can be described as follows:

Suppose P is a procedure of n arguments (xl, Kyr eees X )
and that the values for the first m arguments are
(cl, Cor woes cm). A new procedure P' can now by partial
evaluation be generated such that

P'(

x ) = P(cl, vea,C

xm+l’ ceer Xp ey xn)

bq
m’ m+l’

for all xi, i=mtl,n

The procedure P' is generated in such a way that in the
procedure body of P the variables x; are replaced by the
constants <y and as many calculations as can possibly be
performed in the procedure body are done. Functions, which
do not have or depend on side-effects and which will now
get constant arguments, will be applied to those arguments
and the function call can be replaced in the body by the
value of that application. If a predicate in a conditional
has a known value, either its true or false branch can be

discarded.

In a more general definition we can also allow other knowledge
about the program to be used in order to perform the partial

evaluation.
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A short example may be appropriate here although the rest of

this report contains numerous examples of partial evaluation.
Suppose foo is defined in an Algol-like language as

procedure foo (x,yY,Z);

integer x,y,z;

begin

integer aj;

a : = sin(x);

if y < 3 then fie(a+z) else fie(ax2+z/2);
print(a)

end;

and if x = 1 and y = 5 a procedure foo' can be generated
such that

foo'(z)=foo(l,5,2)
The procedure foo' will be

procedure foo' (z);
integer z;

begin
fie(1.682942+2z/2);
print(0.841471)

end

We assume that the procedure fie does not use the variables

X, Y and a freely. Following operations have to be performed:

a. to calculate sin(1l)

b. to reduce the if-statement to its false branch
to replace all occurrences of a to its value and to cal-
culate ax2

d. to remove x and y from the argument list and a as a

local variable
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2.6 RELATED WORK IN PROGRAM MANIPULATION AND PARTIAL EVALU-
ATION

In the domain of conventional programming languages not many
projects have been reported. A FORTRAN-to-FORTRAN optimizing
compiler is described in (SCH72), in which FORTRAN ccode is
improved through flow analysis, dead variable elimination,
code rearrangement, common subexpression elimination, and con-
stant propagation. Loveman (LOV76) describes a large number of
source-to-source transformations. He has developed his own
language, Penultima 75, which contains most of the facilities
found in other "well-structured" languages, in which the trans-
formations can be tested. He also reports on a Language Lab-
oratory, which is a tool designed to assist in the develop-
ment of optimization techniques for high level programming

languages.

In the LISP oriented domain a large project is in progress by
Wegbreit and Cheatham (CHE72, WEG75a, WEG76) in the field of
automatic programming. They have built a system ECL, in which

a LISP-Algol like language EL/1 is defined. Program manipulation
is an important part of that system. They have a program ana-
lysis system (WEG75b) from which they can derive closed-form
algebraic expressions from simple LISP-program execution be-
havior. The analysis establishes performance goals and these
goals will direct the processing of transformations, which are
carried out by local simplifications, partial evaluation of re-
cursive functions, abstraction of new recursive function de-
finitions from recurring subgoals and generalization of ex-
pressions required to obtain compatible subgoals. Darlington

and Burstall (DAR72, DAR73) describe a system which auto-
matically improves programs. The main transformations in-
volved are recursion removal, elimination common subexpressions
and combining loops, replacing procedure calls by their bodies
and reusing discarded list cells. Later work (BUR75) describes
transformations performed on expressions in a form of first

order recursion equations.
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The projects mentioned here, except the FORTRAN-to-FORTRAN
compiler, concern more or less idealized pbrograms. These work
either in a very pure LISP or in individually developed
languages, such as EL/1 and Penultima 75. On the full INTER-
LISP level we can mention work by Teitelman (TEI73, TEI74),
such as CLISP, where a translation is made from an Algol based
notation to LISP expressions. Our work at Datalogilaboratoriet
in Uppsala and Linkdping has been of use in the entire language,
even if we can only handle a subset of it. We can mention some
of our programs, REDFUN (BEC76) for partial evaluation, the
basis for this report, REDCOMPILE (BEC76) a kind of compiler
for REDFUN, REMREC (RIS73) for recursion removal, PMG (RIS74)
a generator for program manipulation programs and FUNSTRUC
(NOR72) for analysis of call-structure and variable usage in

LISP programs.

Partial evaluation has been used by several researchers for
a variety of purposes and in Beckman et al (BEC76) some of
them are listed with references. Among new usages of this
technique is a project lately reported by Wegbreit (WEG76).

His partial evaluator takes expressions such as

P(Ql(yl) , ”"Qk(yk) Yee1, tc .,yn)

where Qi is a defined function (with one argument for simp-

licity) and constructs a new function P' such that

P (bl, ""bk’bk+l’ ...bn) = P(Ql(bl), ""Qk(bk)’bk+l’ ...,bn)
That is, P' is a variant of P, specialized to the case where

the first k parameters are known to be computed by Ql’ ""Qk'

Other related research areas are orogram verification
automatic programming and a lot of work in programming
languages and in compiler construction. From program veri-
fication we can find methods which for instance prove that

a set of transformations applied to a program will result in

an equivalent program.
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Systems for automatic programming will certainly need program
manipulators when the program code is to be generated. Of
interest is of course the development of new programming
languages which are more suitably constructed in order to
facilitate verification and manipulation of programs and
methods for describing syntax and semantics for programming
languages.

"GTEPUWISE

REFINEMENT "
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3, AN OVERVIEW OF THE REDFUN PROJECT

3.1 A DESIGN ITERATION MODEL FOR THE REDFUN PROJECT

The REDFUN programs have been developed through a design
iteration process. This means that a first version is im-
plemented and then tested, changed and extended successively
while new ideas, experienced and methods are developed. After
a while the program tends to be rather unstructured. A more
systematic design is then performed and a new version of the
program is implemented. This program is now in its turn tested
etc and the process goes on. This model of program development
is found when difficult tasks are tackled, and when no com-
plete theory or methods for solving them exists in advance.
This is the typical case for programs developed in artificial
intelligence and related research areas. This reasearch
methodology in computer science is described by Sandewall
(SAN77) .

Figure 1 is a schematic presentation of the iteration process

for REDFUN. A row in the figure represents one iteration cycle
and a box a step inside an iteration. The capital letters will
be used throughout the present report to indicate where in the

iteration process we are at that moment.
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3.2 FIRST VERSION

The first REDFUN program was developed in connection with the
work on the PCDB system (SAN71 HAR73, HAR74). It is a system
for maintaining a data base of formulas in predicate calculus
and can be seen as a program generator. From a specification of
a problem stated in predicate calculus PCDB generates LISP
procedures for storing and accessing assertions in a data base.
From axioms it generates procedures performing the corre-
sponding deduction. The program generator used a partial eva-
luation technique together with beta-expansion (replacing
procedure calls by procedure bodies after necessary sub-
stitutions) and some other operations on programs, and this
was carried out by REDFUN. This first version was designed for
needs in PCDB and worked quite well, although some minor pro-
blems occurred, which resulted either in updates in the system
or rewriting the code in PCDB so REDFUN could nrocess it. RED-
FUN could operate on code which was written in a clean way,
with no disturbing side-effects and assignments and prog-
expressions restricted to its format etc. This early work
corresponds to the steps A, B and Cl in fig 1, and also to

some of the contributions in D.

The next step was to try to apply REDFUN to a program, which
was not especially designed or influenced by REDFUN. A program
GIP/GUP, performing general input and output of information on
property lists, was chosen as candidate. The pnrogram was very
parametized and the task for REDFUN was to generate a soecial-
ized version of the general program GUP in an application,
where a number of these narameters had known values. This new
experiment pointed out a number of weaknesses of the system.
Many problems occurred because of arbitrary use of assign-
ments and prog-expressions. A lot of changes and extensions
were made to the system, so it worked sufficiently well in
this application, although some of the fixes were performed
more or less temporarily. In fig. 1 these stepbs are represented

by boxes C2, contributions to D and box E.
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In connection with the PCDB work to speed up the generation of
procedures a "compiled" version of REDFUN was built, called
REDCOMPILE. If REDFUN operates on a program P and generates

a specialized version SP we can use REDCOMPILE to translate the
program P to a generator version GP, which now in its turn
can generate the specialized version SP. The generation in

the later case is faster then in the first one, but the trans-
lation of P to GP naturally takes time. If several SP's are

to be generated, total time will however be saved, which was
the case in the PCDB application. If REDCOMPILE is put in the
schemata of fig 1 instead of REDFUN, that program has passed
through the steps A, B and Cl.

The use of the partial evaluation technique and this early

part of the REDFUN project have been reported in "A Partial
Evaluator, and its Use as a Programming Tool" published in the
Artificial Intelligence Journal (BEC76). In sections 4.1-4.4

of this report some parts of that article will be recapitulated.
In the schemata in fig 1 this corresponds in principle to the
first iteration cycle (steps A to E). The study in step C3

was not included in the paper.

3.3 SECOND VERSION

The main work described in this thesis is the next iteration
step of the REDFUN program. It started by going back to step
C, where a study (C3) of the appropriateness of REDFUN and the
partial evaluation technique was performed to see if it could
act as a more intelligent editor. The problem was to extract
from a large file WTFIX, only those parts of functions there,
which served a special purpose, ie the functions had to be
specialized for a special application. The task was partly
one of partial evaluation, e.g. when we knew that a variable
in this application had a special value or values and that we
could go through the code and make reductions. Some results

from this study are reported in section 4.2.
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Problems detected so far (D) are found in sections 4.1.4 and
4,2.1. Among the most important problems to solve were the
handling of arbitrary assignments and side-effects, and to
maintain additional information about the variables used during

the reduction.

A new design was performed of the system (F) to solve some
but not necessarly all, of the deatected problems. This was
carried out among others by introduction of the g-tuple,
whereby more than one value can be returned from a function,
and semantic procedures, by which semantic properties about

functions to operate on can be given to the system.

The new implementation (G), called REDFUN-2, is described in
section 6. A new application to let the partial evaluator ex-
pand macros before compilation of LISP programs, and some new
experiments of this (H) are described in section 7. New detect-

ed problems (I) after these experiments are also reported there.
In section 8 we discuss some directions in which the work on

this system, the next iteration cycle, can proceed.

The following table shows where in this report the respective

steps in fig 1 are described

step sections
3
B 4.1.1
Cl 4.1.2
c2 4.1.3
c3 4.2
D 4.1.4,4.2.1
E -
F 5.1-5.2
G 6.1-6.12
H1 7.3
H2 7.4
I 7.4.3
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"RED FUN"



33

4, THE REDFUN SYSTEM

4.1 SUMMARY OF THE REDFUN REPORT

The REDFUN~-report (BEC76) discusses the proposition that a
partial evaluator can be a very useful tool for program
development. It describes the principles and problems of par-
tial evaluation, shows a number of applications and describes

our experience of the experiments done with the REDFUN program.

In this chapter we shall recapitulate from the report what was
said about the REDFUN program and its use in the PCDB and
GIP/GUP applications and summarize some of the problems which

occurred there.

If the contents in the REDFUN-report are familiar this part can
be skipped and reading continued at section 4.2. In the part
relating to the PCDB application there are some detailed
examples showing the use of the partial evaluation technique

at program generation.

4.1.1 The REDFUN program (program B in fig 1). The central

functions in a program analysis or manipulation program are
those which perform the scanning or traversal of the program
code. These functions operate in a similar way as the inter-
preter functions eval, evlis, apply etc. Eval takes as argu-
ment a form, evlis a list of forms etc. In REDFUN there is a
function redform operation on a form, redargs on an argument-

list, and redfun on a functional expression.
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The most important function is redform, which takes two argu-
ments, a form and an association list. The form will be part-
ially evaluated with respect to known values of variables,
presumably free in the form and appearing on this a-list. If
a variable is not present on the a-list or is bound to the

special value NOBIN, the variable value is not known.

The NOBIN value is used to conceal previous known values of

a variable in other environments.

Redform can be characterized by

eval[redform[form,2],22] = evallform,append[¢,221]]
Examples

redform[A, ((X . B)(A . 2))] = (QUOTE Z)

redform[ (CAR L) ,((L . (1 2 3)))] =1

redform[ (COND ((EQ (CAR X) 'A) (FOO Y)) (T (FIE Y))),
((X . (A BC)))] = (FOO Y)

Redargs takes a list of forms, normally an argument list and

maps over that list and performs redform on each element.

Redfun takes a function expression and a partial binding

environment of that function, i.e. a funarqg expression.
Example

redform [ (FUNARG (LAMBDA (X) (CONS X Y)),({Y . A)))] =
(LAMBDA (X) (CONS X 'A))

We return to redform. If its form is the atom NIL, the atom T
or a number it is returned unchanged. For other literal atoms
a search is made through the a-list and if it is bound the
value is returned in a quote-ed expression. See the first

example above.
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If the form is a list, with a function name as the first

element,

as

(fn argi . argh)

different operations will be performed depending on which

function class fn belongs to. They are

PURE

REDUCER "

OPEN

for basic functions, without any side-effects, which
can be evaluated if all its arguments are known. We

call this operation application of function.

Example
redform[ (CAR L), ((L . (X Y 2)))]= (QUOTE X)

for functions as cond, and, prog etc which have a
special argument structure. Such a function has a
reducer procedure, stored on its property list under
the property REDUCER, which describes how the argu-
ment to this function will be processed by REDFUN.

The procedure is invoked by
apply*[getp[fn,REDUCER],argl, ...,argn]
Example

redform[ (AND L. B (SETQ X A) (FOO Y)),
((A . NIL) (B ..T))] =
(AND L (SETQ X NIL))

where B is eliminated because it is always true and
will not effect the evaluation of the and-expression
and the call to foo will never be reached because

the setg-expression will always be false.

for functions we want to open, i.e. replacing the
function call with the function definition. There
are two alternatives.The first is if the arguments
have no side-effects and look good enough so that we
can do beta-expansion, where the function body,

In the REDFUN-report this class was called SPECIAL
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in which formal arguments have been substituted by
the actual and reduced ones, after reduction is in-
serted at the place for the call.

The second alternative is to perform an open special-
ization, where the whole lambda-exnression is in-
serted. Reduction inside the expression will also

take place.

Example

Suppose foo is defined
(LAMBDA (X Y) (LIST (CAR X) (CDR Y) X)

and is declared open

redform[(FOO L (CDR M)),{((M . (A B C)))] =
(LIST (CAR L) (QUOTE (B C)) L)

is an example of beta-expansion.

redform [ (FOO (PRINT L) (CDR M)),
(M . (ABQO)))] =

( (LAMBDA (X Y)
(LIST (CAR X)
(QUOTE (B C)) X))

(PRINT L) (QUOTE (B C))

is an open specialization. Although the lambda
variable is not needed any more, the actual

version did not remove it.

REDUCED® for functions for which specialization will be per-
formed if some argument or free variable is known.
The specialization can be made either open or

closed. By closed specialization a new function will

be created from the specilized version. This is done
if the function is called recursively or if the same

specialized code is to be used repeatedly.

E 3
This class was introduced in the GIP/GUP ex-
periment, and induded in REDFUN' (mrogram E in fig 1)
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Example
Suppose foo is defined as
(LAMBDA (CHR N)
(COND ((ZEROP N) (TERPRI))
(T (PRIN1 CHR) (FOO CHR (SUB1l N)))))

A closed specialization through
redform [ (FOO (QUOTE =) N),NIL]
will create a new function foo/l defined as

(LAMBDA (N)
(COND ((ZEROP N) (TERPRI))
(T (PRIN1 (QUOTE *)) (FOO/1 (SUB1 N))))))

and the value form redform will be the exnression

(FOO/1 N)

LAMBDA for functions on which no operations are performed.
Their arguments will however be reduced. Functions
with side-effects such as put and rplaca and func-
tions, which depend on side-effects, such as getpn

fall typically in this group.

Simplification. The resulting expression after partial evalu-

ation needs often to be cleaned up. This is done by simpli-

fication rules, called collavsers, such as

(COND X (LIST Y 2)) d (LIST X Y 2)
(CDR (LIST X Y 2)) - (LIST Y Z)
(EVAL (QUOTE form)) > form
(APPLY* (QUOTE CAR) L) - (CAR L)

(SET (QUOTE A) 3) -+ (SETQ A 3)

These rules are procedures and are associated with the lead-
ing function in the rule. They are stored on the property list
of the function under the property COLLAPSER.
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Some rules are predefined by the system and new rules can be
given by the user. An advise technique inserts new rules in
the collapser procedure. If the resulting expression from

redform is a list
(fn arg, arg, ... argn)
the collapser is invoked by

apply[getp[fnﬂOLLAPSERLargl,argz, ...,argn]

Beta-expansion. In beta-expansion a substitution is performed
in the body of formal arguments (lambda-variables) to the
actual ones. This is made through a substitution package in
REDFUN, which traverses the program code similar to the cen-
tral functions in REDFUN, such as redform etc. There are func-

tions substform, substargs and substfun for which substitution

is performed in a form, an argument list and a functional
expression respectively. Special action must also be taken
here for functions with nonstandard argument structures, such

as cond and selectqg.

In the first and simplest version the beta-expansion was per-

formed through the following algorithm:

a. Reduce the arguments to the function, which will be opened.

b. Perform substitution in the function body of lambda-vari-

ables to these arguments, reduced in step a.

c. Call redform with the new function body.

This algorithm has some disadvantages. We are wasting time if
we perform substitution on parts in the program code, which
will later be eliminated. The arguments already reduced, which

have now been inserted in the code will be repeatedly reduced.
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An improvement was made in a later version. When encountering
a cond-expression (and selectg-expression) calls to redform
were performed on the predicates in an attempt to throw away

the then-clause if the predicate was reduced to NIL.

Other improvements. Another place where inefficiences occurred

was when the collapsers had simplified an expression. A re-
cursive call was then made to reform to try to reduce it

further.

This was necessary in cases like
(APPLY* (QUOTE CAR) (QUOTE (A B C)))

for which the apply*-collapser will return
(CAR (QUOTE (A B C)))

which of course can be reduced further. But in cases like
(CONS X (LIST Y Z))

which collapses to

(LIST X Y 2)

no further reduction is needed.

This was solved in one application, by letting the recursive
call to redform after a collapsing be taken away and the value
from the collapser remain as it is. This means that sometimes
we shall receive expressions which are not satisfactorily

simplified. By looping on the too level of the form
fn:=redfun(fn,al)

until fn converges this problem is solved. This seems to be

wasteful but in some cases an improvement was made.

To speed up some conditionals a modified cond was introduced

on the form

(CONDVAR (vy...v) (@

m 1 ¢

l)...('I‘ en))
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where all gi's are those variables, which can occur in any of
the p,. The condvar reducer could then check if all vy had
known values and in that case perform an eval instead of

redform on every <

4.1.2 REDFUN in the PCDB application (anplication Cl in fig 1).
The PCDB system is described in (SAN71, HAR74, HAR73). It main-

tains a data base of formulas in predicate calculus and works
as a program generator in order to create efficient LISP proce-
dures for storage and retrieval of such formulas. Axioms in
the predicate calculus are also compiled to LISP code. The
REDFUN-rapport (BEC76) discusses the principles of the design
considerations taken to perform the program generation in this

application.

REDFUN was primarily designed for this application but it was
found that specializing of code was more general and could be
used in other applications, so instead of including REDFUN in

the PCDB system a separate package was made.

4.1.2.]1 Generation of stordef-procedures. Every relation in

PCDB will have a number of procedures related to it, one for
storage of an assertion with the relation, one for explicit
retrieval and some others. The code generated for such a proce-
dure is driven by a number of parameters, either given by the
user or implicit calculated by the system. These parameters de-
scribe different properties of the relation, such as number of
arguments, datatype of the arguments and the "one-manyness"
between the arguments. The method used to generate these

procedures can be described as

a. The different relations can be grouped together and for
each group a general procedure was written for storage
of a relation in that group. The same was done for the
retrieval procedure and the other procedures. The para-
meters correspond to free variables in these proce-

dures.



41

b. In these procedures calls were ofter made to a library
of auxiliary procedures. Some of them could also in
their turn be opened and some formed a set of run time
procedures, mostly for accessing the property lists
(variations of put, getp, addprop etc).

c. When a procedure was needed for a relation a funarg-
expression was created by sthe general procedure with
the free variables bound to the parameter values and

transferred as funarg-variables.

d. The funarg-expression was then given to redfun and the
result was then a specialized version suitable for that

relation.
Some examples may clarify this.

Suppose we give to PCDB:
RELATION (CHILD 2 (AA AAR) (ONE MANY))

We will then define a relation child of two arguments, both
of datatype literal atom (AA AA). The "one-manyness" de-
claration (ONE MANY) says that if we have

child(x,y) with meaning "y is a child of x"

then for each x there can be several y, but for a given y

there can only be one Xx.
RELATION (MARRIED 2 (AA AA) (ONE ONE}))
defines married as a one-to-one relation.
RELATION (AGE 2 (AA SX) (ONE MANY))

defines age, whose second argument is an arbitrary S-expression,
in this case used for an integer. Another storage convention
must then be used. Normally if an argument is a literal atom,
the argument's property lists are used to store the assertion,

otherwise the relation's property list is used.
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We can then with PCDB store assertions, such as

STORE (CHILD ANDERS KARIN)
STORE (MARRIED ANDERS EVA)
STORE (AGE ANDERS 30)

and perform retrievals, such as

FETCH (AGE ANDERS)

TEST (MARRIED OLLE EVA)
Let us follow how the storage procedures for these relations
are generated. These examples will demonstrate the complexity
of the code this version of REDFUN can operate on, but also
that the reduction, when functions on several levels are
beta-expanded are non-trivial to follow, These examples are
shown again in appendix I, where the beta-expansion is done
one level at a time to make it easier for the reader to follow

the reductions.

All relations belong to the class cleanlink. For each re-
lation a funarg-expression is created containing the general
storage procedure for relations in that class. The funarg-

expression is

{FUNARG
<LAMBDA (A B)
(COND
<(ONEDONE ONE)
(PROG (RONT)
(RETURN (CNND
[(TESTER P A B LOC
{CAF TYP)
(CADF TYP))
ROOT)
C{STORER (RFV F)
B A (QUOTE ONE)
Loc
(CADR TYP))
(RPLACA ROOT B>
(T (APPLY* {FILLAND ONE)
(QUOYTE (STOPEFP P A B (CADP ONE)
Ltoc
(CAP TYP)))
(QUOTE (STNREP (REV R)
B A (CAR ONE)
Lec
(CADR TYP>
X20120024
(R ONE LOC TYP))
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The variables r, one, loc and typ are transferred as funarg-
variables. These variables correspond to the parameters given
by the user or calculated by default by the system. They are
bound to values in the funarg-block (only shown here by a
pointer). The fourth element in the funarg-expression is used
to inform redfun what variables in the funarg-block will form
the a-list of variables with known values in REDFUN.

The function rev returns the reversed relation and is de-

faulted to concatenate REV before the relation name

rev[CHILD] = REVCHILD

The functions tester, storer, getter and comparer are declared

open and will be beta-expanded and the functions oneone,

filland and fillfunc are pure. Their definitions are

TESTER
<LAMBDA (R A B LCC TA TB)
(AND (CAR (SETQ ROOT (GETTYER R A LOC TA)))
(PRNG2 (SETQ RNODT
{APPLY®* (COMPARER (QUOTE ONE)
TR)
(CAR ROOT)
B))
™

STCRER
<LAMBDA (R A B NL TI)
(APPLY® (FILLFUNC N)
(GETTER R A L TI)
B>
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GETTER

CLAMBDA (R A L TI)
{OLDCOND
((AND (MEMB (QUOTE AA}
1)
(AA A))
(SELECTQ L
(ARGS (GEYROOT A R))
(PRED (RGETROOT (GETROQT
R
(QUDTE TRUEFOR))
A))
((HF CYCYCHF)
({GETROOT A R))
NIL))
((AND (MEMB (QUOTE HX)
1)
(HX A))
(SELECTQ L
(ARGS (GETROOT (CAR A)
LR R)
(PRED (PGETROOT (GETROOT
R

{QUOTE TRUEFOR))
[CAR A)))
(UHF CYCYCHF)
(GETROOT (CAR A)
R))

NIL);

({MEMB (QUOTE SX)
T

(RGETROOT (GETROOT R (QUOTF TRUFFOR))

A>

COMPARER
<LAMBDA (N TI)
(COND
({MEMB (QUOTE SX)
n
(SELECTQ N
{MANY (FUNCTICN MEMBER))
(ONE (FUNCTION FQUAL))
NIL))
(T {(SELECTQ N
(ONE (FUNCTION FQ))
(MANY (FUNCTION MEMB)}
NIL>

ONFONE

<LAMRDA (ONE)
(EQUAL ONE (QUOTE (ONE ONF>
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FILLAND
<LAMADA (ONE)
(COND
((EQUAL OME (QUOTE (ONE MANY)))
(FUNCTION REVAND))
(T (FUNCTION AND>

FILLFUNC

<LAMBDA (NC)
(SELECTQ NC
(ONE (FUNCTION FILLROOT))
{MANY (FUNCTION ADDROQDTY)
NIL>

The functions getroot and rgetroot in getter are functions which

belong to the set of run time procedures. They are declared
to belong to the function class lambda, and getroot for ex-

ample is defined such that
car[getroot(a,p]] = getpla,p]

and oldcond is a variant of cond, which assumes the last pre-
dicate in a cond always to be true and can therefore be sub-
stituted into T by redfun. The function filland returns either
and or revand, where the function revand is as and but processes

its arguments backwards.

The funarg-block for the child-relation corresponds to the

association list
((R . CHILD) (ONE . (ONE MANY)) (LOC . ARGS) (TYP .(AA) (ARA))))

The code for child's stordef will after reduction be

<LAMBDA (A BR)
[AND (FILLROCT (GETFNNT B (QUOTE REVCHILD))
A)
{ADDROOT (GETRONT A (QUNTE CHILD))
B>
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In the code fillroot and addroot corresponds to put and
addprop resp. The reversed relation to father is by default
revfather and they are both used as property names

A collapser rule
(REVAND X Y) -~ (AND Y X)

has been used.

The stordef procedure for married will be

<LAMBDA. (A B)
{PRDG (ROOT)
(RETURN
(COND
{UAND <CAR (SETO PODT
{(GETRDOT A (QUOTE MARRIED>
(PROG2 (SETQ ®mNnCOT
(FQ (CAR FNNT)
B))
™)
ROOT)
({FILLROOT (GETRONT B (QUCTE PEVMARRIED)
)
A)
(RPLACA RODT B>

and for age

<LAMBDA (A B)
(AND (FILLROCT (RGETPODT (GETROCT (QUOTE REVAGE)
(QUOTE TRUEFOR))

R)
A)
(ADDROOT (GETRONT A (QUNTE AGE})
B>

The code generated for these stordef-procedures will not store
any assertion which contradicts the "one-manyness" declaration.

If it contradicts, a NIL value is returned.
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4.1.2.2 Example from the axiom compilation step. An axiom in

the predicate calculus is given to the PCDB system as a clause

in an implication form such as

R(y,z) A S(x,y) A P(x) > T(x,2) (=)

R(o,w(c,a),s) o S(g(c,0,a),s)

The axiom is converted to a deterministic procedural form
after a schemata described in Sandewall (SAN73). The code is

then generated after this form.

An axiom can be declared to be used in one or more different
modes, such as to answer closed questions (YES/NO questions)

or open questions (a question returning objects from the

data base). In the first case, if the axiom is to be used for
forward deduction (at storage time) or backward deduction (at
retrieval time) and finally if the deduction shall be performed

in a breadth-first or depth-first order.

Suppose that the first axiom (*) is to be used as a backward
axiom, used in a depth-first manner, and to be able to answer
open questions, i.e. of the type "for a given x find all z
which satisfy T(x,z)". The axiom can be expressed in the

procedural form something like

For a given x find all z such that

P(x) holds and for each y such that

S(x,y) holds create a new subguestion
"find all z which satisfy R(y,z)"

The steps in generation the code are as follows:

a. For each literal, excent the first one, create a pair of
expressions containing a call to the functions bind and
cont respectively, which are two general functions for
accessing the data base and for maintaining the result(s)
from the access. The arguments to these two functions are

quote-ed expressions and accordingly known.
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b. A prog-expression will be created by these pairs and
by an expression, which controls how the subquestion
will be treated.

c. The two functions bind and cont are declared open to
REDFUN, so the whole prog-expression can be given to
redform, which performs beta-expression and partial
evaluation on it. Some optimization of the goto struc-
ture will also be done.

d. This code will be inserted in a procedure associated
with the triggering relation, in this case the relation
r.
Axioms compiled in other modes will be treated in similar
ways. Axioms containing predicate calculus functions, as in
the second example, will be taken careof in a special way in

a pre-step before the compilation. This is not discussed here.

Finally we shall show the above steps, running the example
through PCDB and REDFUN.
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The first two steps will produce

CLAMBDA (N* X)
(PROG (Y YQUE)
(AXNAME AXO)
M1 (BIND NIL (QUOTE (P X))
(QUOTE B0}
(QUOTE M2))
Bl (CONT NIL (QUOTE {P X})
(QUOTE BO)
(QUDTE M2))
M2  (BIND (QUNTE (Y))
(QUNTE (S X Y))
(QUNTE B1)
(QUNTE M3))
A2 (CONT (QUDTE (Y))
(QUNTE (S X Y))
(QUNTE B1)
(QUNTE M3))
M3 (AND (APPLY* (QUOTE AUXRECFIND)
(LIST (QUNTE R)
Y
(RETUPN T))
(G0 R2)
80 (RETURN>

Bind and cont have as arguments a variable list, the literal
and two labels. For an open gquestion the variable list con-
tains those variables from the literal for which values are
retrieved and for a closed question it is NIL. The labels are

used to go to if the retrieval was succesful or not.

The code will after reduction be

<LAMBDA (N¥* X)
(PRAG (Y YQUF)
(AXMAME AX2)
M1 [AND (SYSTEST (LIST (QUNTE P)
X))

(GO M2))
(GN 80}
M2  (SETQ YQUE (SYSFETCH (LIST (QUOTE S)
X))
A2 (COND

[YQUE (SETQ Y (CAP YNQUE))
(SETQ YQUE (CDR YQUE))
(6N M3))
(T {GD BO)})
%3 {AND (AUXRECFIND (LIST (QUOTE P)
Y))
(PETURN 7))
(GD R2)
RO (RETUPND>
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In this code we still have calls to systest and sysfetch,

which are two internal functions, where systest is used to
test if something is stored in the data base, in this example
if P(x) is stored, and sysfetch makes a retrieval, in this
case binding to yque the result given by S(x,?). These func-
tions can be further opened, but they are useful to have in

the code if one wants to trace all accesses in the data base.

Systest is essentially defined as

(LAMBDA (U)
(GETP (CAR U)
(QUOTE TESTDEF)) )

and sysfetch is defined similarly.
If they are declared open the final code will be

<LAMBDA (N*x X)
(PECG (Y YQUF)
(AXNAME AX2)

“1 (AND (FQ (GETP X (QUQOTE P})
(QUOTE ToUF))
(GN ™M21})
(GN BN)
42 (SFTQ YQUFE (GFTP X {QUATE S1))
n?  (COND

(YOQUF (SFTQ Y [{CAP YQUE))
{SETNH YQUF (CDR YQUF})
(GNn M3))
(T (G323 BO)))
M3 (AND (ANYPECETIMD (LIST (QUNTE R)
Y))
(CETUFN T}))
{GN n2)
139 (FFTHONS
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4.1.3 REDFUN in the GIP/GUP experiment (application C2 in fig 1).

In this experiment we wanted to test REDFUN on a program, which
was not particularly designed to suit or be influenced by
REDFUN. The GIP/GUP package was developed by 3. Oskarsson
(0SK73) and was intended for parametized input and output of
p;pper{y lists. The parameters described what data to store

or retrieve and for example what layout the user wants his

data to be printed in, such as indentation, special characters
to separate atoms etc. There are totally 28 parameters to use,

almost all of them have default, values attached to them.

This program became of course very flexible but in some
applications, where the program was used several times with
the same set of parameter values, it could be inefficient. The
experiment was to try to apply REDFUN on GUP (the General
oUtput Program) in order to partialy evaluate it. The aim of
this experiment was to see what problems occur, when REDFUN

is used on a program written without any restrictions in mind,
and to see what extensions should be made to REDFUN so that it

can manipulate a larger class of LISP program.

One extension that was necessary from the beginning was to
introduce the REDUCED option, i.e. closed specialization. The
call structure between the functions in GUP was such that the
same auxiliary functions were called from different nlaces.
Beta-expansion could not be performed because of side-effects
and open specialization was not approoriate because of re-

cursion.

An example taken from the REDFUN report (BEC76) shows the

complexity of a function, which was reduced.
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XTPR is declared REDUCED, REALIND and REALPROP are declared
OPEN and TAKEIN, TAKENDL and TAKEFL are declared PURE. XTPR/Fl
is the new version of XTPR generated by REDFUN. The function
OUTIND has been reduced to OUTIND/Fl, but is not shown here.
It uses however IDTI, IDTP and CARRTERM as free variables,
which are bound in XTPR/Fl.

Before:
(REAL IND
<LAMRNDA (1)
<COND
({GETL ILI (QUNTE INTNAMF>
(T 1>)

(REALPRNP
<LAMBNA (1)
(COND
({TAKEFL FLI (QUOTE FUNC))
(APPLY® T A}Y)
(T (GETP A I>)

(xTP2
CLAMBDA (IX)
{PRNG (P ILI FLI CARRTEPM I SAVF PUTFUNC [DTI
InTe)
(SETO ILL (CHE IX))
(SETQ IX (CAR TX))
<CNND
((NULL (ATAM (CA® ILI)))
(SETQ FLI (CAP ILT))
(SETQ TLI {CDF ILI>
(SETQ NUTFUNC (TAKEIM ILI (QUNTE QUTFUNC)I))
(SFTQ T (PEALINF IX))
(SETQ P (REALPENP [))
<COND
{OUTFING (SETQ P (APPLY* QUTFUNC P>
(CIND
t(NnULL )
(RETURM)) )
(SETQ INTI (PLUS (TAKEIM TLI (QUOTE INDENTI)
)
ID7C))
(SETQ INTP [PLUS (TAKEIN ILT (QUNTE INDENTP)
)
107T1))
(SFTQ CARRTEEM (TAKFMOL ILI (QUNTE CARRTERM)
1)
(PYTIND | P (TAKEFL FLT (QUNTE VERT)))
<COND
((SETQ SAVE (TAKEIN ILI (QUOTE SAVE)))
(PPLACA SAVE (APPENMD (CAR SAVE)
(NTST P>
(F FTURN>)
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After:

(XTPR/F1
<LAMRDA NIL
(PROG (P CARRTERM IDTI IDTP)
(SETQ P (GETP A (QUOTE RELATION)))
(CNND
tINULL P}
(RETURN)))
(SETQ IDTI 2)
(SETQ IDTP 4}
(SETQ CARRTERM (QUOTE =))
(DUTIND/F1 NIL P}
{RETURN>)

Remark. Notice that there are no goto's in the XTPR-function.
This REDFUN-version (step E in fig 1) could not handle

assignments properly when goto's were involved.
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4.1.4 Conclusions from the usage of the REDFUN program (step D in

fig 1) . Here we shall list some of the problems, which occurred
during usage of REDFUN in these applications and experiments
and propose a number of extensions to a revised version, which
we shall call REDFUN-2.

4.1.4.1 Experiences from the PCDB-application. The REDFUN pro-

gram was from the beginning designed for the specific needs
found in PCDB. The hierarchical structure of the auxiliary
functions made the beta-expansion straight forward to perform
and the restricted use of prog's made the analyzing of prog-
statements fairly simple. Some minor problems which occurred

can however be mentioned.

During the beta-expansion a variable in an auxiliary function
was substituted more than once by an expression, which made
a property list access. During execution this access was made
unsatisfactorily several times. This did not introduce any
incorrectness, but efficiency suffered. An example occurred

in a function defined as

CLAMEDA (R R)
{COND
( (NULL (CAR R))
(RFLACA R E))
((EQ (CAR R)
H)
T
(T NILD)

and the lambda-variable r was bound at opening to
(GETROOT S &)

where getroot was defined earlier in section 4.1.2.1.
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The resulting code

(COND
((NULL (CAR (GETROOT S A)))
(RFLACA (GETROOT § A)

R))
((EQ (CAR (GETROOT S A))
k)
™
(T NILD)

was not satisfactory. The problem was temporarily solved in
PCDB by rewriting the few functions in which this occurred,
to prog's and to a prog-variable binding the value after the

property list access, such as

IILAMBDA (R B)
(FROG ((ROOT R))

(RETURN (COND
((NULL (CAR ROOT))

(RFLACA ROOT E))
((EQ (CAR ROCT)
R)

™
(T NILJ

Another problem occurred when the bind function was extended
also to take an optional argument indication what access func-
tion should be used. Instead of sysfetch, which finds explicit
stored facts, one can use for example sysrecfind also to find
facts implicitly stored (see the example in section 4.1.2.2).

The bind-expression will then appear as

C(BIND (QUOTE (Y))
(QUOTE (8 X Y))
(QUOTE E1)
(QUOTE M3)
(QUOTE SYSRECFIND))



56

Bind was defined approximately as

CLAMEBDA (QVARS LIT B M SYSFN DEFTH)
CCOND
C((NULL SYSFN)

(SETQ SYSFN (SYSFNDFLT QVARS]
veed)

and if a function is not supplied, one is calculated by de-
fault. REDFUN however could not handle this case, when a
variable, which was known, received a new value. The bind
function was rewritten to

CLAMEDA (QVARS LIT E M SYSFN DEFTH)

(BINDAUX QVARS LIT B M (BINDSYSFN SYSFN QVARS)
DEFTHI)

and bindsysfn as

[LAMEDA (SYSFN QUARS)
(CONL
((NULL SYSFN)

(SYSFNIFLT QVARS))
(T SYSFNI1)

and bindaux as the old bind, in which the cond-expression was

deleted. Bind and bindaux are declared open and bindsysfn is

declared pure. Instead of rebinding a known variable by a setq
it is rebound through a function call, which REDFUN could
handle.

The collapsers were in some cases not generally written, but
restricted to use in PCDB. If however PCDB is changed or ex-
tended, cases may easily occur which will be erroneously trans-
formed by these collapsers. Such an example is the collapser

for applyx, which performs the following transformations

(APPLY* 'CAR '(A B C)) . (CAR '(A B C))
(APPLY* 'CAR L) > (CAR L)
(APPLY* 'AND 'X 'Y) > (AND X Y)

but will transform incorrectly

(APPLY+ 'AND X Y) to (AND X Y)
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There is no way to escape from a collapser without doing a
transformation and if we return with the same expression, the
collapser will recursively be called again and we enter an in-

finite loop.

4.1.4.2 Experiences from the GIP/GUP experiment. In the

GIP/GUP experiment we expected more problems, which would
probably force us to make a redesign of REDFUN. The reduced
option was introduced directly in order to make closed special-

ization.

One main problem was assignment of variables. It is natural

for a programmer to use assignments, particular in prog-

expressions. "There were cases like

(LAMBDA (X Y)
(PROG (Pl P2 P3)
(SETQ Pl (CAR X))
(SETQ P2 (CADR X))
(SETQ P3 (CADDR X))

))

in which x was known through the call and then naturally both

Py P, and p; would be known.

A more difficult problem to solve was when the assignment was

inside a conditional expression as in

(COND
((EQ X 'A) (SETQ Z (CAR L)) (FOO 2))
(T (FIE 2)))

If we assume that 1 has a known value then z will be known in
the true-clause after the assignment, but we know nothing about
2z in the false-clause and in statements following this cond-
expression. When conditionals appear within each other and
assignments are done on different levels the problem of keep-

ing track of them will become rather complicated.
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The first version of REDFUN could not take care of these assign-
ments, but in the experiment the problem was solved by intro-
ducing free variables which could notify reducers that assign-
ments had been performed. This solution was of a more temporary
nature and a more systematic design of this problem was desir-
able.

Prog-expressions have only been reduced in a restricted way.

In principle every statement will be reduced by redform and

a simple clean-up of go's and labels is done. When assign-
ments occur in a prog, which happened in the GIP/GUP case,
they could only be taken care of when they occurred before

the first label. After that label no assignments, even if they

were assigned to constant values, were taken care of.

At beta-expansion it has already been discussed that efficiency
problems can occur both in the substitution phase - substi-
tutions are done in parts, which will later be eliminated -

and in the following reduction in the body - the arguments,
which have alreadey been reduced will be overhauled again by
redform. Another problem in REDFUN is that if the user intro-
duces his own functions, which have a special argument struc-
ture, he must insert code in substform to show how substi-

tution had to be performed in the arguments.

"“CAADAR"
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4.1.5 The REDCOMPILE program. This program will not be in-
cluded in this work, but will be referenced in sections 7 and

8. Here follows a very short description of the ideas in that
program. The purpose with REDCOMPILE was to speed up the reduc-
tion process. It is useful when REDFUN operates on a program P
several times with the same set of variables with known values
every time. REDCOMPILE can then generate a generator version

of P, which in its turn is used to generate the specialized

version.

Let us' follow an example. Suppose foo is defined as

CLAMEDA (X Y Z)

(COND
(X (COND
(Y (CONS X Z))
(T Z)))

(T (LIST Y Z1)

If we assume x to be a variable with known value, REDCOMPILE

can transform this code into a program foo'

CLAMEBDA ...

(COND
[(GETVAL X)
(LIST (QUOTE CONL)
(LIST (GETARG Y)
(LIST (QUOTE CONS)

(GETARG X)
(GETARG Z)))
(LIST T (GETARG Z1]

(T (LIST (QUOTE LIST)
(GETARG Y)
(GETARG Z1

When executed, this program will generate the appropriate

specialized version of foo.

Exactly how the lambda-variables are bound is left aside here,

but getval and getarg retrievs the value resn. the form a

variable stands for.
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The first cond can be evaluated at generation time, but the
second one is postponed to execution time (of the generated

program) .
At opening of
(FOO 'A (CAR L) (FIE L))
foo' will directly generate

(COND ((CAR L) (CONS 'A (FIE L)))
(T (FIE L)))

The actual version of REDCOMPILE has been used in PCDB and all
functions there, which are defined as open, have been run
through REDCOMPILE. Still a lot of problems remain to solve in
order to get a REDCOMPILE system, which can process more comp-
lex code. Some problems are more difficult to solve in
REDCOMPILE than in REDFUN, and have to be solved either by
running REDFUN as a post-processor, or by instructing
REDCOMPILE to insert calls to redform into the code it gene-

rates.
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4.2 A STUDY OF MANIPULATION IN THE WTFIX FILE (STEP C3).

The INTERLISP system implemented on the IBM 360/370 was
developed in such a way that a large portion of the LISP
code could be directly transfered from the INTERLISP-10
system when some minor changes had been performed. Some
features in INTERLISP-10 have been excluded in the basic
INTERLISP 360/370 system, for example history, CLISP and
DWIM. Some of these packages have been implemented locally
in the INTERLISP 360/370 system. This work was mainly done
by Jim Goodwin. One problem with these packages was that
they were spread over many file. When the history package
was implemented, one task was to extract from the file WTFIX
those parts which were used only by that package, omitting
those parts which were included there to serve the packages
DWIM and CLISP. This extraction was done manually, by scanning
down the code in the file and marking what parts could be
deleted. This task is not so trivial as it perhaps sounds.
One must know the functions and variables which are only
used by these "unwanted" packages and find all special cases
in code which are there only to serve them. When this task
is made manually the comments in the texts gives of course

a lot of valuable information.

Our question was then, what should an automatic system look
like in order to help us in this case. A discussion with Jim
Goodwin resulted in a list of all changes done in the file.
We then analyzed this list to see if any of our program mani-
pulation programs, especially REDFUN, could perform such
changes. What we think we need is a more intelligent editor,
which not only knows about the syntax, but also more about
the semantics of the language, and therefore is able to per-

form more advanced changes in the code.

No such "intelligent editor" was written, but the detailed
study of the problems resulted in some requirements on a part-
ial evaluator. We shall here discuss the example from that

point of view.
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Changes of a partial evaluation character. A number of flags

in the source code, eg dwimflg and clispflg specified ex-

plicitly parts of the code that could be removed. These flags
could be assumed to have the value NIL and the reduction is
then a typical task for REDFUN to perform. There were also
some calls to functions, which should be deleted, and for
which we could assume a constant value to be returned. The

reduction could then be performed like for variables.

There was also a case where a variable was three valued and
one value could be excluded. Parts in the code where the vari-
able had this excluded value, could be deleted. Partial eval-
uation with respect of the set of permissible values for a
variable, or the information that a variable can not have
certain values, can not be done by REDFUN, and was selected

as one requirement on the next generation program.

In another case we had

(SELECTQ (CAR FAULTX)
.. a number of cases ,,

)

and a number of these cases had to be removed because no
special treatment should be performed in these cases. This
task could be seen as a partial evaluation task if we could
say something like "In the lists that are possible values
of faultx, the first element can not be any of a

a, etc",

1’ =2
or perhaps more correctly, "if the first element is one of

a;, a, etc we are not interested in special treatments of

such lists at any place in the code". This case can not
either be done by REDFUN.
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Changes where partial evaluation is not sufficient. A number

of variables, mostly prog-variables, and calls to certain
functions had to be deleted entirely from the code. This
deletion can not be performed as a partial evaluation task,
because we can not assume any value(s) for these variables
and function calls. Special care must also be taken when they
are deleted from the code. The question is if any of the en-
vironment, in which the variable or call is placed, also had
to be deleted.

In the example

(COND ((LISTP X) (CAR 2Z))
(T (FUM X)))

where z is assumed to be deleted, the whole car-expression can
be removed, but the user had to tell if he wants to keep the
listp-check or not. We can either get

(COND ((LISTP X))
(T (FUM)))

or

(FUM X)

Another example. In WTFIX there was a variable fixclk, which

had to be deleted. The assignment
(SETQ FIXCLK (CLOCK 2))

has therefore no sense, but it is not obvious if the third
form in the expressions also should be deleted. If the assign-
ment is performed in a context, where the value of the assign-
ment is of interest, it can not simply be deleted, and also if
it performs side-effects. In other cases the expression can

be taken away, eg if the assignment is performed as a statement

in a prog.
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Transformations. To clean up in the code we wanted to per-

form a number of transformations, such as

(SELECTQ (CAR FAULTX)
(T %as)
NIL)

to
(COND ((EQ (CAR FAULTX) T) s»))

Most of them could be performed through collapser rules in
REDFUN.

Still of course there is a number of cases which are really
difficult to perform automatically. They involve a rather deep
understanding and knowledge of the whole INTERLISP-system and

can only be carried out manually.

4.2.1 Conclusions from the study. Partial evaluation and the

other operations in REDFUN could nerform some of the tasks
found in this study. New requirements on the next version of
REDFUN was to extend the ability to handle more information
about the values a variable can be bound to. In this study

we could use the knowledge that a variable could only have two
different values. Another requirement was to handle information
about list structures, such as the case when we knew that the
first element in a list only could be certain objects. In the

next version REDFUN-2 the first requirement will be included.
The second one is much more complex to realize in a general

way and will therefore be excluded.

In other discussions about requirements of the REDFUN system
there is a need to keep track of the datatype(s) of the values

a variable can be bound to. Redundant datatype checks can then
be removed from the code. This will also be included in REDFUN-2.
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5., DESIGN ALTERATIONS FOR REDFUN-2

In this chapter we will first list the new features whichwill be
included in the new version of the REDFUN program. This new
version is called REDFUN-2 to distinguish from the old version.
The main design considerations in this implementation are de-
scribed in the second section. These two parts correspond to
step F in the design iteration scheme shown in chapter 3.

The actual implementation of REDFUN-2 will be described in
chapter 6.

5.1 NEW FEATURES IN REDFUN-2.

The experiments with REDFUN, reported in the former section,
and other desirable features led us to propose the following

main extensions:

5.1.1 Extended range of information about variable values. In

REDFUN we could only make use of the fact that a variable had
a constant value. We would like to extend this also to make
use of the fact that we at a specific point in the program

know

- all the different values a variable can be bound to
- values a variable cannot be bound to
- the datatype(s) of the values a variable can be bound to

Suppose that X has the value A
Y has one of the values B, C or D
Z cannot have the value A

V is an integer
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We can then perform the following reductions:

(COND ((EQ X 'A) (FOO X))

(T (FIE X))) + (PO A

(COND ((EQ Y 'A) (FOO X)) ~ (FIE X)
(T (FIE X)))

(COND ((EQ 2z 'A) (FOO X)) - (FIE X)
(T (FIE X)))

(COND ((LISTP V) (FOO X)) - (FIE X)

(T (FIE X)))

This extension is a natural next step and the need of it has
been found both in the WTFIX-study (4.2) and in other dis-
cussions of the usefulness of the REDFUN system.

Our system will not be able to manage logical expressions in
order to describe the values a variable can be bound to, such

as
"the variable x has the value 5 if either y is 2 or z is 6"

The system would have needed a more advanced deduction capa-
bility in order to handle such expressions and we decided not

to include it in this version.

5.1.2 Handling of values from expressions. The extended range

of information about variable values will make it necessary

for the system to be able to keep track of value information
about arbitrary expressions in the code. If x can have either
1 or 2 as value the expression addl[x] will consequently have
the values 2 or 3. Every branch in a cond-expression can have
known values and it is then possible to derive all the values

the cond-expression can return. The expression

(COND ((EQ X 'A) 10)
((EQ X 'B) 3)
(T 5))
will naturally return either 3,5 or 10 as value. A number of func-
tions will always return a value of a certain datatype, which in

many cases can be useful to know.
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For some functions the value can be derived even if we only

have partial knowledge about its arguments. For the exoression

(PUT A B 'VALUE)

we know from put's definition that its third argument will
always be returned as value. Another case is if we know in
an eg-check that its first argument can only have A or B as
values and its second argument cannot have those values we
can conclude that the eg-check will always be false. We call

this a pseudo-computation, when the value can be calculated

without really evaluating the expression.

5.1.3 Systematic handling of side-effects, especially assign-

ments. All side-effects, such as assignments, destructive
changes in list structures, input/output etc must be detected
and carefully processed. A form performing side-effects can
normally not be deleted from the code. Rearrangements of such
forms can only be done in restricted cases. If side-effects
interact with each other or with other code they must of course

occur in the same order in the rearranged code.

In side-effects appear in an argument to a pure-function and
the value of this argument is known, we shall want to apply
the function to its arguments. The form with the side-effect

must remain in the resulting expression. Suppose we have
(CONS (PUT A B 'C) '(D E))

and if cons is pure the form could be reduced to
(PROGN (PUT A B 'C) (QUOTE (C D E)))

In every form an analysis must be performed to find those
variables which can be assigned there, but also to distinguish
between variables, which will always be assigned and those

which will only be assigned in some branch of the expression,
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Here we shall show some different cases which the system must
be able to handle. Suppose x has the value A and z one of the

values NIL or B.
a. (PROGN (CONS (SETQ X Z) (FOO X)) (FIE X))

The assignment of x will have the result that x both at the

call to foo and fie will have one of the values NIL or B.
b. (PROGN (AND Z (SETQ X Z) (FOO X)) (FIE X))

The assignment here will have the result that at the call to
foo, x will have the value B. If z has the value NIL the
evaluation in the and-expression will be ended and the assign-
ment never performed. At the call to fie we cannot be sure

if the assignment has been done and can only deduce here that

x will have one of the values NIL, A or B.
c. (PROGN (AND (SETQ X Z) (FOO X)) (FIE X))

In this case, when the assignment is done first in the and-
expression it will always be performed. At the call to fie
we can exclude the old value A for x, otherwise it works as

in the case b.

In cond-expressions an analysis must also be performed to
check if a variable will always be assigned there regardless

of the path taken in the expression.

To take care of assignments in a proper and systematic way is
probably the most important extension compared to the basic
REDFUN version (program B in fig 1). In the PCDB application
(4.1.2) there were no assignments in the code which was pro-
cessed by REDFUN, but in the GIP/GUP-program (4.1.3) the assign-
ments caused a lot of problems for REDFUN, although some of
these problems could be solved temporarily in the REDFUN'-
version (program E in fig 1). If one wants REDFUN to process
ordinary written code one cannot expect such code be written

without assignments.



69

5.1.4 Extraction of variable properties from the code. In con-

ditionals the predicate often gives information about vari-
ables, which can be used during the processing in the different

branches. If we have

(COND ((EQ X 'A) (FOO X))
(T (FIE X)))

and nothing is known about x before the cond-expression, we
can in the true branch derive that x has the value A and in

the false branch that it cannot have A as value.

The system shall also be capable of deriving datatype in-

formation about values a variable can be bound to, such as

(COND ((LITATOM X) (Fl X))
(T (F2 X))))

Here we know that x is a literal atom at the call to fl and

that x cannot be a literal atom at the call to f2.

It is clear that a program contains masses of information
which could be extracted but we must here restrict ourselves
to extracting only that information about a variable which

can be obtained reasonably economically.

In our system information will be derived for pure LISP predi-
cates, such as eq, memb, litatom etc. and for logical functions
and conditional expressions. We restrict the extraction only

to be done if the information about a variable can be de-
scribed in one of the three ways mentioned in 5.1.1, and
accordingly to that not when a logical expression is needed

to describe the information.
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In the expression

(COND ((OR (EQ X 'A) (EQ X 'B)) (FOO X))
(T (FIE X)))

we can derive that x is either A or B in the true branch and

that x cannot be A or B in the false branch. In the expression,

(COND ((OR (EQ X 'A) (EQ Y 'B)) (FOO X))
(T (FIE X)))

however, we can only derive information about the variables,

x and y in the false branch, i.e. that x cannot have the value
A and y not the value B. In the true branch we cannot know
which of the two forms in the or-expressions was calculated

to true. The information of x and y in the true branch can
only be described by a logical expression and will not be de-

rived.

5.1.5 Reduction of prog-expression. REDFUN could only handle

restricted structures of prog-expressions. In REDFUN' (program
E in fig 1) assignments of variables were only taken care of
before the first label and after that label no information
about the variables was assumed to be known. In arbitrary
loop-structures it is a complicated task to perform a per-
fect analysis of assignments and how these assignments will
affect the reduction. In REDFUN-2 an analysis will be per-
formed to find the goto-structure and to detect loops, and
those variables which may be assigned in these loops. A vari-
able assigned in a loop is often treated as to have an un-
known value at the reduction in the loop. In some cases, if
the variable is assigned to constant values or values of cer-
tain datatype, such information can be used to avoid that the
variable is assumed to have unknown values at reduction of the

loop, such as in the example
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(PROG (Y)
(SETQ Y 0)
LOP
(COND ((FOO X Y) (GO 0OUT))
(OR X (SETQ Y 1))
(SETQ X (FIE X Y))
(GO LOP)
ouT

-)
Here we know that the variable y only can have the values 0
and 1 in the loop (if we assume foo and fie not to perform

any side-effects of y).

This analysis of side-effects has to be performed before the
reduction. Therefore assignments in parts which should be
eliminated may sometimes affect the knowledge we have about
a variable before the reduction of the loop. A small example
illustrates such a case which we assume the new system not

to be able to reduce completely.

(PROG (X Y)
(SETQ X 2)
LOP
(COND ((FOO X) (GO 0UT)))
(AND (EQ X 1) (SETQ Y 3))
(SETQ X (ADD1 X))
(AND (EQ Y 3) (SETQ X (MINUS X))
(GO LOP)
ouT
ves )

A loop is detected and the assignment analysis reports that the
variables x and y may be assigned there. The variable y can
get the value 3 and X can be assigned to an integer. Depending
on this analysis, the variable information about x and y be-
fore the reduction of the loop will be that x is an integer

and y can have either NIL or 3 as value.
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After some reasoning, however, one can show that x can never
be 1 (if we assume the function foo not to perform any side-
effects on x and y) and therefore y never be 3. The correct
reduction should be to eliminate the two and-expressions. This
example shows that in the general case we need a deduction

capability to prove properties about variables.
This is not included in this version of REDFUN. By this new
scheme, however, a larger class of prog-expressions will be

reduced in a satisfactory way.

5.1.6 Other features. Opening of fucntions has to be looked

over and a more systematic implementation is desirable of the
various ways a function can be opened. Beta-expansion and
open specialization come from REDFUN (program B) and closed
specialization from REDFUN'(version E). It would also be
desirable to have an automatic procedure which can choose an
appropriate way to open a function call depending on the

arguments and the definition of the function.

The collapser part has to be extended, so it can handle cases
described in secion 4.1.1 in a correct way. What one really
would like is a more general pattern matching system in order
to describe the transformations one would like to perform in
the code, but this will not be included in the REDFUN-2

generation of the system.

Extension of the number of function classes. A function can
belong to several classes depending on the arguments to the
function. The function car is treated as a pure if its argu-
ment is a list and as a reducer if the argument is a literal
atom, in which case car performs an evaluation of a global

variable.
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5.2 PRINCIPAL CHANGES IN THE DESIGN OF THE NEW SYSTEM
RELATIVE TO REDFUN

In this section we shall discuss the main changes in the de-
sign of REDFUN-2 relative to REDFUN. A number of concepts,
which will be used in the rest of the report, will also be

defined here.

The section 5.2.1 gives also some background of the design of

the program structure used at the implementation of REDFUN.

5.2.]1 Design of the program structure. The first version of

REDFUN was a fairly straightforward and well-structured program.
The code traversal and the various actions performed on the

code were done through the main functions redform, redargs

and redfun (described earlier in section 4.1.1). The closeness
to the interpreter functions eval, evlis, apply etc. made these
functions easy to understand. The functions in the substitution
package followed the same pattern. So, when we process an ex-
pression we normally first recursively process its subex-
pressions, in principle the recursive decent method in com-
piling techniques (GRI71) . Information is brought from a
higher expression down to a subexpression through parameters
and we cannot underneath from an expression reach its super-

expressions.

The REDFUN-2 system follows in principle the same design, but
compared to REDFUN information can be sent back from a sub-

expression to higher expressions.

Another design criteriﬁm is that the traversal in the code is
made as much as possible in a one-pass manner. This means that
property extraction from the code is made parallel with the
reduction. This cannot always be done, e.g. in a prog-ex-
pression a sweep through the code has to be done in order to
analyze the goto-structure and the assignments before the re-

duction is performed.
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In the PRD-technique discussed in the REDFUN-report (BEC76)
and in Sandewall (SAN76) a program is organized in a "data-
driven" way where procedures associated with data items from
the problem domain are stored on property lists. One advantage
in structuring a program in this way is that it is easier to
extend the program by adding new procedures. In REDFUN it was

used for reducers and collapsers and in REDFUN-2 it is also

used for the "semantic" routines, which are used to supply

information about LISP functions.

5.2.2 Value-descriptors. In REDFUN, a variable from the

processed code was stored in an association list (a-list) together
with its value, if it was known, or together with the atom
NOBIN. In REDFUN-2 the variable will be stored together with

a value-descriptor. Such value-descriptors can be of 4 differ-

ent types.

VALUES to describe the values a variable can be bound
to or be returned from a form. We will use the
notation

xvalues= ta B C}
meaning that x can have either A, B or C as
value and no other values.

NOVALUES to describe values a variable or a form cannot

have and is written as
xnovalues= (12}

with meaning that x cannot have 1 or 2 as value.

DATATYPE to describe the datatype of those values, which
can be bound to a variable or be returned from
a form. We write this as

xdatatype= integer
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NOBIN to show that no information is available for

a variable and is written as
xnobin

A value-descriptor is simply implemented as a pair which first
element decribes the type and the second element the value(s).

The values example above is represented as

(:VALUES . (A B C))

5.2.3 The g-tuple. In order to return information from a

processed expression, from a called procedure in REDFUN-2 to
its caller, a g-tuple will be returned. Such a tuple consists

of six elements

< form, values, side-effect, truectxt, falsectxt, assinginfo >

where

form is the reduced expression

values is a value-descriptor specifying the
value(s) form can return when evaluated

side-effects is a flag indication whether a side-effect
can be performed or not in form when eva-
luated

truectxt is an a-list of variables and value-
descriptors where the value-descriptor
represents information extracted for a
variable from form which holds when form
has been evaluated to true

falsectxt as truectxt but which holds when form
is evaluated to false

assigninfo is an a-list of variables and value-

descriptors for those variables which may
be assigned in form. The value-de-
scriptor describes the value(s) the form

can be assigned to
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When an ordinary form is processed by redform the arguments

are first reduced through redargs. Redargs will now after every

reduction of an argument check if there is any information in
the g-tuple about assignments in the form which can affect the
a-list before the next argument has to be reduced. When all
arguments are reduced a new g-tuple is created for the form

with information extracted from the arguments's g-tuples.

An example
Consider the expression

(COND ((EQ X Y) (F1 X))
(T (F2 X)))

and a-list information that

Yvalues= (A}

holds before the expression. When the eg-expression has been

reduced following information is found in the g-tuple.

< (EQ X 'a),
NIL,
false,
[xvalues= (A,
= |
[xnovalues all,

NIL >

Some remarks. The possible values returned from the eg-
expression will not be stored in the g-tuple. The eg-expression
stands in a predicate- position and the value is therefore

of no interest here. When the fl-expression is reduced the

a-list will contain

yvalues: (a} and xvalues= {ta}

and when the f2-expression is reduced

{aA} and [A)

= X =
Yyalues novalues

No side-effects can occur in this form and that element in the

g-tuple is NIL.
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5.2.4 Semantic procedures. Pseudo-computations described in

5.1.2 and the property extraction of variable values described
in 5.1.4 will be performed by semantic procedures which can

be associated with every function. These procedures can be seen
as a procedural description of some semantic property, which
holds for the fucntion. The system will contain a basic set

of such procedures and the user should be able to supply
additional procedures for systemfunctions or functions

he writes himself.

5.2.5 Redesign of the prog-reducer. The extended scheme to

reduce prog-expressions described in 5.1.5, will cause a
total redesign of the prog-reducer. The necessary programs
for the analysis of the goto-structure and the assignments in
the prog-expression and programs which clean up in the ex-
pression after the reduction (postprog-transformations) will
be generated with the support by the PMG-system (RIS74). The
traversal of the code in these programs follows the PMG-
standard which makes it easier when there are user-defined

functions which do not follow the standard argument evaluation.

5.2.6 Redesign of the substitution package. REDFUN contained a

separate substitution package used when functions were beta-
expanded in order to substitute formal arguments against actual
ones. This caused some problems. When a new function with
special argument structure is going to be processed by REDFUN
code had to be inserted in the substitution package in order

to perform the substitution correctly. There were also an
efficiency problem because substitutions were made in parts of
the code which later will be reduced away. In our new system
these problems can be eliminated if we extend the a-list in-

formation also to include substitutions—-descriptors, which is

simply the form a variable has to be substitutied for. The
actual substitution will then be performed during the reduction
process when the variable is encountered in the code. This
causes that the substitution package can be thrown away in our

new system.
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5.2.7 Reduction in contexts. Consider the form

(CONS (PUT A I 'K) '(L M))
Usually, this form should be reduced to
(PROGN (PUT A I 'K) '(K L M))

However, if the form should appear in a context where its
value is insignificant (for example a statement in a PROG
expression, or in a non-terminal position in a PROGN ex-

pression), it can instead be simplified to

(PUT 'A 'I 'K)

It is also important to know the context a form appears in if
extraction of variable properties should be done or not. If
such properties never can be used they should not be cal-

culated for efficiency reasons. Consider the expression

(COND ((EQ X 'A))
(T (FOO X)))

If the cond-expression is a statement in a prog there is no
use of extracting the information that x has the value A when
the eg-expression is evaluated to true. It is either no use
here of calculating the possible values the cond-expression

can return.
Therefore, for each form that REDFUN-2 encounters during its
recursive descent into an expression, the program should know

the context in which the expression is to be evaluated.

The following are the significant different cases:

novalue-context no value(s) of the form has to be com-
puted

value-context compute value(s) if possible

boolean-context it is sufficent to know if the form is

true of false
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There shall also be a way to distinguish if property ex-
traction from the form should be performed or not described

by the example above.

A similar context mechanism is found in a LISP compiler (URM77).
There is a value- and a novalue-context. In a novalue can-

text no code for returning a value will be generated. There

are also contexts for branches in conditionals indication
whether a jump will be performed or not if the predicate

is evaluated to true or false.

"Q-TUPLE"
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6. THE REDFUN-2 SYSTEM

6.1 OVERVIEW

In this chapter the new system REDFUN-2 is described. Every
section covers a part of the system and describes its im-
plementation. A number of examples are shown and discussed

about restrictions and problems are also included.

In the description of the implementation we are trying not

to go down to the LISP code level. When code is shown in

this chapter it is done in order to give the reader an idea

of the complexity of the code, rather than to actually de-
scribe it in detail. Appendix V contains the acutal LISP code
for some of the central functions, such as redform, redargs and

tryapply, and for one of the reducers

A number of the examples used in this chapter are run through
REDFUN-2, and the results are shown in appendix VI. These
examples are marked in this chapter with (EX 4) corresponding

to example 4 in the appendix.

In the examples in this chapter (and in the whole report)
there are often calls to the procedures foo, fie, fum, f1, f2
etc. When nothing else is stated about them in an example we
assume that these functions are "nice", meaning that they will
not perform any side-effects or similar which may spoil the

example.
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Although the REDFUN-2 program is implemented in INTERLISP/20,
the program processes code written in the INTERLISP 360/370
dialect. Only minor changes in the program are required to

let it also process the INTERLISP/20 dialect. One difference
between the dialects is the use of car to access a global value.
In INTERLISP/20 this access has to be performed by the new
function gettopval. Similarly, instead of using rplaca to

assign a global value, one must use the new function settonval.

The following sections are included in this chapter

6.2 Extended range of information about variable values
6.3 Quoted-expressions

6.4 Computing values of forms

6.5 Extraction of variable properties
6.6 Handling of side-effects

6.7 Variable assignments

6.8 Extended function class authority
6.9 Reduction of prog-expressions
6.10 Opening of functions

6.11 Collapsers

6.12 Reduction in contexts
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6.2 EXTENDED RANGE OF INFORMATION ABOUT VARIABLE VALUES.

6.2.1 A-list. In REDFUN there was only a simple a-list to
hold the variables with known values. If the variable was
bound to NOBIN, it had no known value and this fact was used
to conceal other values for this variable bound on the a-

list used in other environments.

In REDFUN-2 the a-list is extended to contain pairs of vari-
ables and value-descriptors. A value Hescriptor is represented

either as NOBIN or as a pair
(type . val)

described by following table

type of type val
value-descriptor

values* :VALUE a value
:VALUES a list of values
novalues :NOVALUES a list of values
datatype :DATATYPE a datatype
Example

The a-list

((X . (:VALUES . (1 2 3))) (Y . NOBIN)

(Z . (:DATATYPE . INTEGER))

(Y . (:VALUE . T)) (V . (:NOVALUES . (A B C))))

carries the following information

X can have either 1, 2 or 3 as value
for Y nothing can be said
Z is of the datatype integer

V cannot have any of the values A, B or C

* A distinction is made between the cases when there is a

single value and several values.
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6.2.2 Datatypes. The datatypes used in REDFUN-2 are the nor-

mal datatypes in INTERLISP, such as

SEXPR S-expressions

ATOM

LITATOM literal atoms

INTEGER

SMALLINTEGER

LARGEINTEGER"*

FLOAT floating point numbers
LIST list structures
STRING

ARRAY

but do not include datatypes such as stack pointers, funarg
blocks, function indicators etc. Other datatypes combined of

those above are also included, such as
NUMBER for integers and floating point numbers

and variants of those, to which NIL can belong, such as

SEXPR-NOTNIL S-expression except NIL
ATOM-NOTNIL atom except NIL
LITATOM-NOTNIL literal atom except NIL
LIST-NOTNIL list structure except NIL

These datatypes are all true and are therefore useful in

true/false - checks.

A variable known only as true resp. false is renresented as
(:NOVALUES . (NIL)) resp (:VALUE . NIL)

* In an early version of REDFUN-2 this type was called
BIGINTEGER, but the INTERLISP 360/370 system was always
obstinate to enter an infinite loop when it encountered

the atom BIGINTEGER during reading.
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Every datatype is also associated with a typefn procedure,
which checks if its argument is of that type. We have for

example
LIST : TYPEFN =

(LAMBDA (X)
(OR (NULL X) (LISTP X)))

ARRAY : TYPEFN =
ARRAYP

SEXPR-NOTNIL : TYPEFN =
(LAMBDA (X)
(AND X (OR (ATOM X) (LISTP X))))
Internally in the system there is also a negated version of
these data types. For INTEGER there is an NEG-INTEGER, in-
dicating that a variable with this datatype can not be an

integer.

* This notation means that the atom list under the property
name typfn has the lambda-expression as property values.
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6.2.3 Reductions of value-descriptors. Two value-descriptors

can be combined either through an or-reduction or an and-
reduction. This happens when more information has become

available for a variable during the processing of the code.

Suppose

Xyalues = (ABCl ()

holds before the expression

(COND (L (SETQ X 'B))
(LL (SETQ X 'D))
(T NIL))

From this expression we shall extract new possible values for

x and will receive

Xyalues ~ (R D}

The value-descriptor after the cond-expression will be cal-

culated by the or-reduction

={ABC) v x {B D}

X =
value®S values

resulting in

X alues = {A B C D}

If we instead have the expression

(COND ((MEMB X '(B C D)) (FOO X))
(T (FIE X)))

and the same value-descriptor (x) holds for x before the cond-
expression, the new value descriptor at the call to foo for

x can be calculated by the and-reduction

{ABC} A X = {B C D}

X values

values
resulting in

xvalues: (B ¢}
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and at the call to fie it is calculated by

= {ABC} A X = {B C D}

X
values novalues

resulting in

Xvalues (a}

In some reductions, however, information will be lost when

datatypes are involved. The following expression

integer v x {3 A NIL}

xdatatype = values ~

will be reduced to

xdatatypé = atom

Another example is that there is no way in this scheme to
express that a variable can be bound only to values, which
are either floating-point numbers or literals. There is no

such combined datatyme in the system. A reduction of

float v x litatom

xdatatype = datatype =

will result in

xdatatype = atom

The information that the variable cannot be bound to an integer

is then lost.

There is a table containing all datatypes showing the re-
lationships between them and which is used when reduction are
performed. The table contains also all subdatatypes for a
datatype. The datatype NUMBER has the subdatatypes INTEGER,
SMALLINTEGER, LARGEINTEGER and FLOAT.

A reduction between datatypes is called a d-reduction.

This scheme for handling datatypes is appropriate in most

cases, although one often, in a non-declarative language as
LISP uses, for example, a temporary variable for different
purposes in the code and therefore lets it hold objects of

different datatypes.
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The reduction schemata of the various types of value-de-
scriptors is finally shown in two tables.
values novalues datatype
values - -
alSB
novalues novalues -
a - B ** a N B
datatype novalues datatype
d-reduce those ele- d-reduce
a and the ments in B a and B.
datatypes which are
of the not of the
elements datatype a.
in 8. If no such
element exists
a nobin value-
descriptor is
returnd.
Table 1 or-reduction *
values novalues datatype
values - -
anN B
values novalues -
B=-a a U g
values datatype datatype
those ele- a d-reduce
ments in B (subdata-
which are tyoes of
of datatype a) N (sub-
a. datatypes
of 8

Table 2

and-reduction

*, ** see next page
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These tables should be read as follows. Suppose we want to

reduce

= ayvVv

B8

X X =
novalues values

In the or-reduction table under values/novalues we find this

to be reduced to

X = a -
novalues 8

The expression

xdatatype =@ A Xyalues
is reduced through the and-reduction table under values/

datatypes to

X = "those elements in 8 which are of datatyve a"
values

and with a = literalatom and 8 = {A B 1 1.5} we shall get

¥values (A B}

Remark. And-reduction of a novalues and a datatype, ie

= a A X B

*novalues datatype =

is choosen to be reduced to

xdatatype =B

It could also be reduced to

Xnovalues
In both cases we loose information about the variable and it
is not obviuos which of them is the most appropriate. If the
later reduction would be desirable in some application it is

trivial to change the program.

* The or-reduction and the and-reduction are commutative
operations and therefore only the lower half of the tables

are filled in.

*¥* 3 - g is the set difference between o and B8
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6.3 QUOTED-EXPRESSIONS

The g-tuple, which holds a reduced form and information ex-
tracted from it, is simply represented as a list, with the
atom QUOTED as the first argument. Such a list is called a

quoted-expression. The structure is

(QUOTED form values side-effect truectxt falsectxt assigninfo)

where form is the reduced form,
values a value descriptor,

side-effect the atom :SIDE if side-effects occur, other-
wise NIL,

truectxt an a-list of variables and value descriptors, for
information which holds when the form is evaluated

to true

falsectxt as above, but which holds when the form is evalu-

ated to false

assigninfo an a-list of variables and value descriptors
for those variables which may be assigned in

the form.

A guoted-expression is only created if there is any information

available to store there.
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Example
Suppose we want to reduce following form

CAND (EQ X Y)
(COND
C(NUMBERF X)
(FOO X)) (EX 1)
(T (SETR Z (FIE X))
(SETQR V (QUOTE K1

with the a-1list
((Y . (:VALUE . A)))

We assume also foo and fie not to perform any side-effects.

Following guoted-expression will be the result

(QUOTED CAND (EQ X (QUOTE A))
(FROGN (SETQ Z (FIE (QUOTE a&)))
(SETQ V (QUOTE E1]
(3VALUES NIL H)
{SILE
((V ISETQVALUE (VALUE . E)
(Z .+ NOHIN)
(X IVALUE . A))
(X INOVALUES A))
((V ADDVALUE (VALUE . E)
(Z :ADDOVALUE . NOBIN)))

Explanations for each element in this expression

- Some reductions could be performed. The cond-expression is

reduced to its false branch.
- Possible values from this reduced form is NIL and B.

- The assignments caused the side-effect flag to be set.

* When output is printed directly by the LISP system the pairs
are not so clearly written. Remember that the expressions

(:VALUES WIL B)
and

(:VALUES . (NIL B))

are identical.
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- If the form is evaluated to true we can derive that x has
the value A, z has an unknown value and v has the value B.
The :SETQVALUE in v's value-descriptor indicates that v has

been assigned in the form to that value.

- If the form is evaluated to false we can derive that x

cannot have the value A,

- In the form, v and z may be assigned, v to the value B and
z to an unknown value. The :ADDVALUE in these value-de-
scriptors indicates that the assignments may be performed.
If :ADDVALUE was not there the assingments will always be

performed when the form is evaluated.
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6.4 COMPUTING VALUES OF FORMS.

6.4.1 Application of function. For pure-functions the operation

application of function has been extended. If all arguments to

a pure-function are known and no side-effects disturb them,
then the function will be applied to its arguments. This oper-
ation can also be done when the arguments are of the values-
type, when we know all the values an argument can be bound to.

If we have
(ADD1 X)

and x's value-descriptor is
(:VALUES . (3 4 5)))

an evaluation of addl will be done on each possible argument

value and the results will be 4,5 and 6.

This can also be performed for a function of two or more
arguments. We must then apply the function to all the con-
binations of argument values which can appear. Suppose foo

is defined as
(LAMBDA (X Y 2Z) (PLUS X (TIMES Y Z)))
and we perform

redform[ (LESSP (FOO A B C) 6),((A . (:VALUES . (3 4 5)))
(B . (:VALUE . 2))
(C . (:VALUES . (2 =-2))))1]

we shall have 6 (3 x 1 x 2) argument combination to compute
(FOO A B C)

which will result in the values -1,0,1,7,8 or 9, and
(LESSP (FOO A B C) 6)

is consequently calculated for 6 (6 x 1) argument combinations

with the result NIL or T.
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A problem arises here., The combinations of arguments can be
very many or the evaluation of the function very expensive,

so we cannot afford to compute them. This is solved in REDFUN-2
since the user can for every pure-function give the maximum
number of combinations it may have, in order to allow the com-
putation to be done. A default maximum for functions can be
set and is actually in the present system set to 20. Another
way could be to let the system ask the user what to do in this
situation, for situations can of course arise where these com-
putations can be the crucial ones in order to be able to per-
form reductions in the program. The best thing would of course
be if we had a smart analysing program, which could tell when

and where it is worth spending time on such computations.

In some cases this evaluation with all argument combinations
can be made more efficient by a semantic procedure. Sunpose
(EQ X Y)

and that x and y can have 50 different values each. In order
to find out if this eg-expression will always be evaluated to
NIL, instead of applying eg on 2500 argument pairs, we can

make a check if an intersectionof x's and y's values will be
empty or not. If it is empty no x and y are equal and we can

therefore deduce the value always to be NIL.

For some functions whose arguments are of the novalues-type

similar computation can be done, such as for
(ADD1 X)

and when x's value descriptor is
(:NOVALUES . (2 3 4))

we can then compute the value to
(:NOVALUES . (3 4 5))

This can only be done for functions where there is an one-to-
one mapping between the arguments and the value. Actually there
are not so many for which this holds. In the present system

we have only included addl, subl, and minusp and they are

called evalnovaluefns.
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The functions cons and list also belong to this category but
there is probably not much point in performing this computation
for them. The user can of course extend this category with

other functions.

6.4.2 Computing values from conditionals and logical functions.

For conditionals it is possible to deduce what value(s) can be
returned, if we have enough knowledge about the value(s) for

the different branches.

For a cond-expression its value-descriptor can be calculated

in the following way. Suppose we have

(COND (p; el) (P, e,) ... (pk) .o (pn en))

and that valdescr(ej) is the value-descriptor for &y~

a. Start with the empty set v.

b. For each B, which is not known as false, add if gi exists
valdescr(ei) otherwise valdescr(pi) to v. If < is not known
as true add the descriptor (:VALUE . NIL) to v. Make an or-

reduction of v.

c. The remaining element is the value-descriptor for the cond-

expression.

We can have cases where side-effects in predicates prevent us

from removing false predicates, such as in
(COND ((FOO X) 10)

((SETQ 2z NIL))
(T 12))

Here the possible values are 10 and 12.

For an or-expression and selectg-expression it is simple to
perform an or-reduction of the different argument's resp.

cases's value-descriptors.
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For an and-expression

(AND e €y ... en)

an or-reduction is done on valdescr(en) and (:VALUE . NIL)
Consider
(AND (FOO X) (FIE X) 'A)

and we know nothing about foo and fie, we shall receive the

values A or NIL.

6.4.3 Pseudo-computations. In many cases we can perform

pseudo-computations of functions when we only have partial

knowledge about its arguments or when application of function
cannot be performed because side-effects are involved. By us-
ing a pseudo-computation a value can be calculated for a form

although we have not actually evaluated it.

For some functions we know the value by its definition. The
function put returns its third arguments as value, so if we
know the value(s) that argument can have, we also know the
value(s) which will be returned, for example

(PUT A P 'VAL)

will result in

(QUOTED (PUT A P 'VAL) (:VALUE . VAL) :SIDE)

The expression is also marked to perform a side-effect when

it is evaluated.

A number of sematic procedures, which perform various type of

pseudo-computation can be associated with a function.

The function put will have a valuefn-procedure,

[LAMEBDA (C F V)
(GETVALUES V1

where getvalues fetches the values-element from a quoted-

expression.



97

A function foo, which returns the constant 'A can be associ-
ated with

FOO : VALUEFN =

CLAMEDA (X)
(MAKE :VALUE (GUOTE A1l

where make:value creates a value-descriptor.

For pure-functions we can anticipate that evaluations of a
function for all argument combinations will be performed by
using a valuefn-procedure instead (also discussed in 6.4.1).

This is useful in cases, such as when we have
(EQ X Y)

and x and y can each have several different values. It is then
interesting to know if this expression will always be eva-
luated to false and instead of actually performing all evalu-
ations of the form we can calculate it by a procedure de-
fined as

EQ : VALUEFN = *

CLAMELDA (X Y)
(COND' ( (INTERSECTION (!VALUES X?
(:VALUES Y
NIL)
(T (MAKEFAL.SEVAL]

If the intersection of x's and y's values is empty, then we
can deduce that the expression always will be false. The func-
tion makefalseval, makes the value-descrintor representing

the false value.

* If NIL is returned from a semantic procedure it was not

applicable, otherwise a value-descriptor is returned.
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Examples
redform[ (EQ X Y), ((X . (:VALUES . (A B))) (EX 2)
(Y . (:VALUES . (C D))))]
= NIL
redform[ (EQ X Y),((X . (:VALUES . (A B))) (EX 3)
(Y . (:VALUES . (A C))))]
= (EQ X Y)
Consider the same example again
(EQ X Y) (EX 4)
and an a-list, which looks like
((X . (:VALUES . (B C}))) (Y . (:NOVALUES . (A B C))))

We can also here deduce that the eg-expression will always

be false. The function eq will also have a novaluefn-proce-

dure, which performs that computation. The procedure is de-

fined as

CLAMBDA
(A EB)
(FROG
((A (VALUEFY A))
(B (VALUEFY E))
(VAL-NOVAL (VAL~-NOVAL? A E)))
(RETURN
(SELECTQ
VAL -NOVAL
(VAL-NOVALS (AND (MEME A R)
(MAKEFALSEVAL)))
(VALS~-NOVALS (AND' (EVERY A
(F/7L (X))

(MEME X H)))

(MAKEFALSEVAL)))

(NOVALS-VAL (AND (MEME B A)
(MAKEFALSEVAL)))

(NOVAL.S-VALS (ANL (EVERY R
(F/7L (XD

(MEME X A)))

(MAKEFALSEVAL)))
NIL]
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where valuefy and val-noval? decide which combination of

:value, :values and :novalues the value-descriptors of the

arguments belong to. This procedure is invoked when at least

one argument is of the novalues-type.

There is also a novaluefn-procedure for memb. If we arrive

at a situation where

(MEMB X ‘(A D)) (EX 5)
and x's value-descripor is

(:NOVALUES . (A B C D))

we can deduce that the memb-expression will be false.

The INTERLISP predicates, which test datatype authority, such
as listp, arrayp, fixp etc. have an associated datatypefn-

procedure which simply cheks if the argument to such a predi-

cate will result in a true® or false value. If we have
(FIXP X)

and x is a large integer, the procedure returns a true value-
descriptor. If it is a literal atom a false value-descriptor
is returned or finally if x is a number nothing can be said

about the value.

* Actually in INTERLISP, some predicates return T and other

return its argument as the true value.
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Finally there is a semantic procedure, the tryapplyfn-proce-
dure, to cover all other possibilities. This is used in the
same way as the collapsers and the user provides contributions
which are inserted in the procedure by an advise-technique. The
procedure is associated with a pure-function, and the arguments
are passed over to the procedure, where any computation can

be performed, depending on the arguments. It is used for
example on eq to check if its arguments are of different and
disjoint datatypes, in which case we know that eq will be

false.

EQ : TRYAPPLYFN =

I'LAMEDNA (CTXT X Y)
(FROG (DX OY)
(RETURN (COND ((AND (SETQ DX

(GET:DATATYFE
X))
(SETQ Iy
(GET:!DATATYFE
Y))
(ODISJOINTDATATYFE
Lox DY))
(MAKEFALSEVAL))
(T NILI
The expression
(EQ X 'Ad) (EX 6)
with
((X . (:DATATYPE . INTEGER)))
will result in
NIL —r
Q

"PSEUDO COMPUTATION"
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6.4.4 The tryapply-procedure. The application of function

to constant arguments and the invocation of these semantic
procedures are performed in REDFUN-2 by the function tryapply.
Here we shall summarise the different actions which this

function performs for a pure LISP function.

Tryapply has three arguments, a function fn, an argument list
args and a context® to reduce in rctxt. The arguments have
been reduced through redargs. The following cases can now

appear:
a. An empty argument list. The function will be evaluated by
res := apply(fn,NIL]
and the value from
gwotelres]

is returned. The function gwote puts res in a guote-ex-
pression, except for NIL, T and numbers.

The arguments will be classified into one of the following

classes:

b. "allgwoted". All arguments have a single known value
and no side-effects will interfere, so an evaluation can

be done and the value from
gwote[evallcons[fn,args]]]

will be returned.

* That context is described in section 6.12
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"allsinglevalue". As b. but side-effects are involved
among the arguments. A progn-expression of the arguments,
in which side-effects will be performed at evaluation,

is created and the value of the expression will be cal-
culated, when arguments with side-effects have been re-
placed by their values. This value will then be con-
catenated at the end of the progn-expression. An example

of this is the form
(LIST (SETQ X Z) V (PUT A P X))

in which list is supposed to be pure and with the a-
list

((z . (:VALUE . ADAM))) (V . (:VALUE . DAVID)))

The result will be returned as

(QUOTED (PROGN (SETQ X (QUOTE ADAM) )
(PUT A P (QUOTE ADAM))
(QUOTE (ADAM DAVID ADAM)))
(:VALUE . (ADAM DAVID ADAM) )
:SIDE
.- )
"allknownvalues". The arguments's value-descriptors are of
values-type, i.e. we know all the values the arguments can
have and side-effects can be involved. The following cases

can appear here:

dl. The number of argument combinations exceeds the maxi-
mum combinations allowed for the computations to be
done (see 6.4.1) in which case just the value of the

form
cons(fn,args)
is returned.

d2. Application of the function to every argument combi-
nation will be performed. We can then get one sircle or
several values from these computations. If we get one
value and there are no side-ef{fects in the arguments,
an expression will be returned as in b. and with side-

effects a progn-expression as in c.
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Examples
(LESSP X Y)
with a-list
((X . (:VALUES . (1 2))) (Y : (:VALUES . (5 7 8))))
will result in
T
but
(LESSP X (PUT A P Y))
with the same a-list will.result in
(QUOTED (PROGN (PUT A P Y) T) (VALUES . T) :SIDE)})
d3. Finally if there are several results

(QUOTED cons|fn,args] (:VALUES . (all values)) ...)

"allnovalues". If all arguments involved are of novalues-
type and the function is defined to be an evalnovaluefn, it
will be applied to all argument combinations and the re-
sults will be the values which the form cannot have. This

was described earlier in 6.4.1. An example
(ADD1 X)

with the a-list
((X . (:NOVALUES . (1 2 3))))

will result in

(QUOTED (ADDl X) (:NOVALUES . (2 3 4)))

If none of the above computations has been done success-

fully then sematic procedures are invoked.

fl. If at least one argument is of novalues-tyne the

novaluefn-procedure is called.

f2. If at least one argument is of the datatype-tyne the
datatypefn-procedure is called.
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£f3. If none of these was successful then the tryapplyfn-

procedure is called.

If the function fn returns values of a certain datatype, it

is notified in the quoted-expression, such as for
(PACK L)
which will result in

(QUOTED (PACK L) (:DATATYPE . ATOM))

The datatype of the result can for some functions devend

on the datatypes of their arguments, i.e. plus, difference

etc. If the arguments are all integers the result will also
be an integer, but if one of the arguments is a floating
point number the result will be so too. Different cases

can therefore occur
(PLUS 2 X)
in which x is an integer, will result in
(QUOTED (PLUS 2 X) (:DATATYPE . INTEGER))
and
(PLUS 2.5 X 3)
in which nothing is known about x will be
(QUOTED (PLUS 2.5 X 3) (:DATATYPE . FLOAT))
and finally
(PLUS 2 X)
in which we know nothing about x will be
(QUOTED (PLUS 2 X) (:DATATYPE . NUMBER))

A specialization of the function plus can also be done
to give either iplus or fplus, as in the examples above,

by collapser rules.
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h., If all different values a function can return are known
and stored as fn:values, a value-descriptor is created Ly

these values.
Example

(GRATERP X Y)
results in

(QUOTED (GREATERP X Y) (:VALUES . (T NIL)))

i. In all other cases
cons[fn,args]

is returned.

6.4.5 Summmary of the semantic procedures.
valuefn invoked by exBr-functions* and sideexpr-functions®,

e.g. put and print. Used when a value can be calculated from
such a function. Also used by pure-functions to anticipate
evaluations of functions applied to several argument com-

binations when that calculation can be performed in other ways.

novaluefn invoked by pure-functions, when at least one argu-

ment is of novalues-type. Useful for eq and memb for example.

datatypefn invoked by a pure function, when at least one
argument is of datatype-type. The INTERLISP predicates which

test datatype authority have such a procedure.

tryapplyfn invoked by pure-functions.

These categories and classes of semantic procedures must not be
seen as an exhaustive classifying of LISP functions. They only
demonstrate some properties of these functions and some cases

which it is useful to separate in this application.

x
expr and sideexpr are function classes described in section
6.8.1.
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6.5 EXTRACTION OF VARIABLES PROPERTIES

6.5.1 True- and false-branches. In conditionals, such as cond

and selectqg and in logical functions, such as and and or, it
is possible to extract properties of variables occurring in
the predicates and forms respectively which hold if we assume
that the predicate or form will be true or false.

If we have
(AND (EQ X 'A) (FOO X) ...)

we know that if the first form is true then x in the second
form will have the value A. We call the remaining forms after
the first one to be in a true-branch with respect to the first

form. There can also be a false-branch.

In a cond-expression these branches are defined as follows.

(COND (p; e;)

(p, e2)

(p, e,))

The true-branch with respect to B; is the expression e i.e.
the form(s) which will be evaluated if R; is true. The false-

branch with respect to B; consists of the succeeding clauses.

e

(Pis1 €341
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In a selectg-expression

(SELECTQ case
(P, ey)
(p, €5)

en)

the true-branch with respect to case=p, (or case € pi) is the

expression e, and the false-branch the expressions gj, j=1i+1,n.

i

In an and-expression

(AND e, e

1 €y re-
the true-branch with respect to e, is the rest of the ex-

e )
n
pressions gj, j=i+1l,n. The false-branch is empty.

In an or-expression

1 €y re- en)

the false-branch with respect to e is the rest of the ex-

(OR e, e

pressions gj, j=i+l,n. The true-branch is empty here.

6.5.2 The truectxt- and falsectxt-elements. The information

which has been extracted from a form, i.e. pair of variables
and value-descriptors, which holds in the true-branch with
respect to the form, is stored in the truectxt-element in
the gquoted-expression. Information which holds in the false-

branch is stored in the falsectxt-element.

The or-expression in

(COND ((OR (EQ X 1) (EQ X 2)) (F1 X))
(T (F2 X)))
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will after the reduction appear as

(QUOTED (OR (EQ X 1) (EQ X 2))

NIL
NIL

((X . (:VALUES . (1 2))))
((X . (:NOVALUES . (1 2))))
NIL

In the true-branch the truectxt-element gives that x has the
value 1 or 2, and in the false-branch the falsectxt-element

gives that x cannot be 1 or 2.

6.5.3 Example. Let us follow an example*

(COND ((EQ X 'A) (Fl X))

((MEMB X '(A B)) (F2 X)) (EX 7)
((EQ X 'D) (F3 X))
(T (F4 X)))

Suppose we also know that

Xvalues= {A B C}

holds before the cond-expression.

* We assume fl, f2 etc. not to perform any side-effect on the

variable x.
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From the first eg-expression we can deduce that in its true-
branch x must have the value A. In its false-branch a speciali-
zation is performed of what is known about x before the cond-
expression and the fact that x cannot have the value A, which

results in the and-reduction

X {ABC}AX = {A} - X {B C}

values novalues values™
The memb-predicate will transfer to its true-branch the in-
formation that x must have the value B, which is also done

after an and-reduction

X = {BC} A X {A B} » X {B}

values values~ values
To the false-branch is transferred the information that x will
have the value C, so the next eg-expression will always be
false and can be eliminated. The whole cond-expression can

consequently be reduced to
(COND ((EQ X 'A) (Fl1 'A))
((MEMB X '(A B))  (F2 'B))
(T (F4 'C)))

* A collapsing of the memb-expression to
(EQ X 'B)

might be preferable. Such collapsing can only be done if it
is not important what true-value will be returned. The memb-

expression will return (B) but the eg-expression T.
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6.5.4 Pure functions and ctxtfn-procedures. The extraction of

variable properties from pure LISP predicates is performed by
ctxtfn-procedures. Every predicate has such a procedure
associated. The user can also define own procedures. A ctxtfn-

procedure returns a ctxt-descriptor

(:CTXT truectxt falsectxt)

in which truectxt is an a-list of variables and value-de-
scriptors which holds in the true-branch and similarly for the
falsectxt. The elements in the ctxt-descriptor will be in-

serted as the corresponding elements in the quoted-expressions.

6.5.4.1 Examples. The ctxtfn-procedure for eq is defined as

CLAMEDA
(RCTXT X Y)
(FROG
(VALX VALY)
(RETURN
(COND
C(AND (VARIABLE X)
(SETQ VALY (GETVALUES Y)))
(COND
((ANDl (VARIARLE Y)
(SETQ VALX (GETVALUES X)))
(MAKE!CTXT (LIST (CONS (VARIARLIZE X)
VALY)
(CONS (VARIAEBLIZE Y)
VALX))
(LIST (CONS (VARIAHLIZE X)
(OFFOSITVAL VALY))
(CONS (VARIABLIZE Y)
(OFFOSITVAL VALX)))
RCTXT))
(T (MAKE!CTXT (LIST (CONS (VARIABLIZE X)
VALY))
(LIST (CONS (VARIABLIZE X)
(OFFOSITVAL VALY)))
RCTXT1
((AND (VARIAERLE Y)
(SETQ VALX (GETVALUES X)))
(MAKEICTXT (LIST (CONS (VARIAELIZE Y)
VALX))
(LIST (CONS (VARIABLIZE Y)
(QFFOSITVAL VALX)))
RCTXT))
(T NIL1]
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The arguments in the eg-expression which are bound to x and y
can be quoted-expressions. Variable tests if the form actually
is a variable and variablize extracts it from a guoted-ex-
pression. The function getvalues extracts the value-descriptor
and make:ctxt creates a ctxt-descriptor. The function
oppositval returns a value-descriptor describing the values

opposite to the ones given.

oppositval[ (:VALUE . A)]= (:NOVALUES . (A))

oppositval( (:DATATYPE . ATOM)] = (:DATATYPE . NEG-ATOM)
The ctxtfn-procedure will for the expression

(EQ X 'A)
return the ctxt-descriptor

(:CTXT ((X . (:VALUE . A))) ((X . (:NOVALUES . (A)))))

For the expression
(EQ X Y)
and with the value-descriptors

Xvalues: th B} and Yvalues= (B c}

we can obtain information about both x and y.

For litatom the ctxtfn-procedure appears as

LAMEDA
(RCTXT U V)
(FROG
(VAL)
(RETURN
(COND' ¢ (VARIAEBLE U)
(MAKE:CTXT
CLIST (CONS (VARIABRLIZE U)
(MAKE!DATATYFE (QUOTE
LITATOMI
CLIST (CONS (VARIABRLIZE W)
(MAKE ! DATATYFE (QUOTE
NEG-LITATOMI

RCTXT]
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The function make:datatype creates a value-descriptor of the
datatype-type. For

(LITATOM X)
the following ctxt-descriptor will be obtained

(:CTXT ({(X . LITATOM)) (X . NEG-LITATOM)))

6.5.5 Logical functions and conditionals. For logical functions

and conditionals the respective reducer is responsible for
collecting the information about properties of variables which
holds in the true- and false-branch, i.e. the truectxt-element

and the falsectxt-element in the quoted-expression.

6.5.5.1 And- and or-expressions. An and-expression is true if

every argument is also true and the truectxt-element can then

be derived from the truectxt-element for each argument.

In the expression
(AND (EQ X 'A) (MEMB Y '(1 2 3)))

we can derive that x is A and y one of 1, 2 or 3 when the
whole expression is true. What can be derived when it is false?
In this case we cannot know which of the two arguments was
calculated to the value NIL and cannot derive anything about
either X or y to be used in the false-branch. The same happens
with or-expressions. For them we can derive information when

it is false, all arguments have then been evaluated, but cannot
always extract information to be used in its true-branch for
the same reason that we cannot know which of the arguments was
calculated to true. But in some cases, however, information

can be derived. In the expression

(OR (EQ X 'A) (EQ X 'B}) (*)
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we will of course know that x will be eitherA or B if the
whole expression is evaluated to true. If a truectxt-element
is available for a variable in every argument (which is not
known always to be false) in the or-expression a truectxt-
element can be calculated for the whole or-expression and is
calculated by an or-reduction for that variable's value-de-
scriptors which holds in the true-branch for each argument.
The same holds for the and-expression when it is calculated

to false.

6.5.5.2 Cond-expression. For cond-expressions it is a little

more complex to derive this information, both to find those
variables for which something can be said, how the information
is extracted from the cond-expression and to calculate the
value-descriptor which holds for the variable when the ex-

pression is calculated to true and false respecitely.

Let us follow an example.

(COND ((EQ X 5) T)
((EQ X 7) NIL) (EX 8)
(T Y))

We assume no information about x and y is available at the
entry of the expression. For the variable y nothing can really
be said. The cond-expression can be both true and false in the
first two clauses regardless of the value of y. For the vari-
able x however, information can be derived to be used both in

its true- and false-branch. The cond-expression can be true

either in the first clause or in the third one. From these

two clauses the following value-descriptors for x hold

xvalues= 53

from the first clause and
Xnovalues= (571

from the last one.
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The value descriptor which holds generally for x in the true-
branch can then be deduced from these two by an or-reduction

which will result in

xnovalues= {7

i.e. the conclusion is that x cannot have the value 7 if the

whole cond-expression is evaluated to true.

By the same reasoning for x when the whole cond-expression is

false, the or-reduction

{7} v x {5 7} » x {5}

x = = =
values novalues novalues

gives the result that x cannot have the value 5 in its false-

branch.

6.5.5.3 Algorithms. Two algorithms are used to extract vari-

ables properties in a cond-expression and here we shall show
those for extraction information for variables while holds in
the true-branch. The corresponding algorithms for the false-

branch are very similar.

Algorithm I

To find those variables, for which a truectxt-element can

be created.

Algorithm TII

To collect for such variables value-descriptors in the
cond-expression from which the resulting value-descriptor

to be inserted in the truectxt-element can be calculated.

The reason for having two separate algorithms is that it is
more economical first to scan through the clauses in the cond-
expression and find those variables for which it is worth
collecting value-descriptors and performing reductions. The
latter algorithm is much more resource consuming than the

first one.
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We assume

(COND ¢ €y -+- C )

1 n

where ¢, is a clause either (p, e.) or (p.).
=i i 7i i

A true clausc is a clause, which will always return a true
value. A false clause will always return a false value. The

two procedures trueclause and falseclause check this.
The procedure pred returns the predicate in a clause and the
procedure expr returns either e if the clause is of type

(pi ei) or p; if of type (pi).

The procedures truectxtvars and falsectxtvars return those

variables for which information is available to be used in the

true- resp. false-branch.

Algorithm I

a. Initialize the variables truebranch and falsebranch to

false. They are used to flag if a true resp. a false
clause has been encountered.

Set vars to the empty set.

b. for i := n to 1 do

comment the clauses are processed backwards;

ol
1]

pred(ci);

m
It

expr(ci);

if falseclause(c;)
then if falsebranch = false

then falsebranch := true;

vars := vars U falsectxtvars(pi)
else vars := vars U truectxtvars(p,)
else if truebranch = false
then truebranch := true;
vars := truectxtvars(ei) U truectxtvars(pi)
else vars := vars N (truectxtvars(ei) U

(truectxtvars(pi));

if not(trueclause(ci)) then falsebranch := true;
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c. The variables, for which a truectxt-element can be

created are to be found in vars.

Algorithm II

Var is the variable from vars after step c. in algorithm I.
For each clause c., which is not a false clause, calculate the
value-descriptor fro var, which holds after expr(ci). Collect
those value descriptors and perform an or-reduction and the

result is the wanted value-descriptor.

Let us follow the algorithms for the example

(COND ((EQ X 3) NIL) clause 1
((EQ X 5) (EQ Y 5)) 2 (EX 9)
((EQ ¥ 3) T) 3
(T NIL)) 4

Algorithm I will process the clauses backwards and we shall
repeat step b. 4 times. The values of the variables in the

algorithm are shown in the following table after that a clause

has been processed.

truebranch | falsebranch | vars
clause 4 false true NIL
3 true true (Y)
2 true true (Y)

1 true true (Y X)

The algorithm II will consequently be performed for both

variables x and y. A true value from the cond-expression can

be received from clauses 2 and 3 and the next table shows the

value-descriptors for x and y in these clauses

clause 2 xvalues: {5} Yvalues= {5}

3 xnovalues= {3 5} Yvalues= (33
?F—reduc- xnovalues= £33 Yvalues= t3 53
tion
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When the cond-expression is true it holds that x cannot have

the value 3 and that y will have one of the values 3 or 5.

6.5.6 Own "datatypes". With this scheme the user can himself

introduce his own "datatypes" for variables and be able to
remove redundant datatype checks for example. Suppose we have
in an application a new datatype which we call persrecord,
implemented as a free property list headed by a datatype marker
PERSREC. We will then have a predicate persrecp, which tests

if its argument is of that datatype. It can simply be defined

as
(LAMBDA (L) (AND (LISTP L) (EQ (CAR L) 'PERSREC)))

A normal technique is then to introduce a number of small
primitive functions to access or test fields in such records.
To be careful one should always check in these procedures that
the datatype they operate on is correct and otherwise make an
error-message or perform some other action. We can for example
have a function getage to access the age-property of such

record, and this can be defined as

(LAMBDA (L) (COND ((PERSRECP L) (GET (CDR L) 'AGE))
(T (ERROR-ROUTINE-FOR-WRONG-DATATYPE)))})

In a production system it can be expensive with all these data-
type checks and opening these primitive procedures would

probably be desirable so redundant checks and superfluous

code for error-routine calls could be removed.

In REDFUN-2 we can declare the persrecp function as pure and
associate a datatypefn- and a ctxtfn-procedure
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We can define the datatypefn-procedure as

(LAMBDA (L)
(COND ((EQ (GET:DATATYPE L) 'PERSREC) (MAKETRUEVAL))

((EQ (GET:DATATYPE L) 'NEG-PERSREC) (MAKEFALSEVAL))
(T NIL)))

and the ctxtfn-procedure
(LAMBDA (RCTXT L)
(COND ((VARIABLE L) (MAKE:CTXT (LIST
(CONS (VARIABLIZE L)
(MAKE : DATATYPE 'PERSREC)))
(LIST
(CONS (VARIABLIZE L)
(MAKE : DATATYPE 'NEG-PERSREC)))

RCTXT)
(T NIL)))

Consider now cases where the code is

(AND (PERSRECP L) (GETAGE L))

which after opening of getage will result in

(AND (PERSRECP L) (GET (CAR L) 'AGE))

In getage we know that 1 has already been checked to be of the
right datatype so the desirable reduction could be performed.

"SIDE EFFECTS"
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6.6 HANDLING OF SIDE-EFFECTS.

Special care must be taken when side-effects occur in the code.
A form which can perform a side-effect when it is evaluated

will be marked in the quoted-expression. Example
(QUOTED (PUT A B C) NIL :SIDE)
We can distinguish some different cases.

- Side-effects among arguments to a pure-function. This has
been discussed in 6.4.4. The principle was that if the
values of the arguments are known, the value of the whole
expression can be calculated and a progn-expression will be
created by those arguments with side-effects together with
the value.

Suppose
(MEMB (SETQ X 'A) (CONS (SETQ Y 'C) 2)) (EX 10)
and 2z's value-descriptor
(:VALUE . (B A))
The cons-expression can be calculated and reduced to
(PROGN (SETQ Y 'C) '(C B A))
The whole expression will then be
(PROGN (SETQ X 'A) (SETQ Y 'C) '(A))

~ Functions performing side-effects. These are normally de-

clared as a sideexpr or a sidefexpr. For a sideexpr func-

tion the arguments will first be reduced and by the valuefn-
procedure a pseudo-computation can be performed to obtain
its value if enough information about the arguments is
known. A sidefexpr function will not be affected and is
only marked to perform side-effects. For special cases one
can have a reducer-property and perform the necessary
processing oneself.

- Side-effects depending on variable assingments are described

in next section 6.7.
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6.7 VARIABLE ASSIGWMENTS.

Assignments must be taken care of in a systematic way. A vari-
able which has had known value(s) can be assigned to a new

value which can be known or unknown, or a new variable can be
assigned known value(s). The a-list in REDFUN which holds the

value-descriptors of such variables must be updated.

When assignments are done in conditionals, logical functions
and prog's the problem of keeping track of these assignments
is rather complex. Here follow some cases which can be dis-
tinguished. Assignments in prog-expressions are described in
6.9.

6.7.1 Assignments in arguments to a function of pure, :expr or

sideexpr-type. If an assignment will always be performed when
the arguments are evaluated, the assignment must affect the
a-list in REDFUN when processing the remaining arguments in

that form and the succeeding forms after that function call.
Example
(CONS (SETQ 2 5) (LIST (SETQ X Y) (FOO X Z)))

If we do not know anything about y and foo performs no
assignments on z and x, we can deduce that when the foo-

expression is processed the a-list contains
((X . NOBIN) (2 . (:VALUE . 5)) ....)

The same a-list will be used for the forms following this

cons-expression.

6.7.2 Assignments inside conditionals and logical functions.

In such expression we can not be sure that the assignment will
be performed, so we must keep track of the different cases
which can occur. If an assignment is done in a branch in a
cond-expression that assignment is only performed if its

corresponding predicate is true, such as in

(COND ((EQ X Y) (SETQ Y 5) (FOO X Y))
(T (FIE Y))) (EX 11)
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In the foo-expression we know that y has value 5, but after
the cond-expression we can only deduce that an assignment may

have been performed and that a possible value for y is 5.

In

(COND ((NULL X) (FOO Y))
((EQ X (SETQ Y 5)) (FIE X Y)) (EX 12)
(T (FUM Y)))

the assignment is done in a predicate of a clause and it holds
that this assignment affects both the rest of the forms in

the clause and the remaining clauses in the expression. After
the cond-expression we can also here only deduce that a

possible value of y is 5.

If, however, the assignment is done in the first predicate
this assignment will hold for all clauses and also for the

forms after the cond-expression, such as in

(COND ((EQ X (SETQ Z 5)) (FOO X 2)) (EX 13)
(T (FIE X 2)))

The same case occurs also in and- and or-expressions in which

the first form is always evaluated, such as in
(AND (EQ X (SETQ Y 5)) (FOO X 2Z)) (EX 14)

But it is not so simple that an assignment in the first form
will always be performed. This form can of course also in its

turn be a conditional, as
(AND (OR L (SETQ Y 5)) (FOO Y)) (EX 15)

If an assignment is done on a variable in every branch we know
that the variable will be assigned when evaluated under the
assumption that one predicate will always be true. An example
is
(COND ((NULL X) (SETQ Y 1))
((EQ X Y) (SETQ Y 2)) (EX 16)
(T (SETQ Y 3)))



122

Other cases may also occur

(COND ((NULL X) (SETQ Y 1))
((EQ X ¥Y) (SETQ Y 2))
((FOO (SETQ Y 3)) (FIE X Y))
(T (FUM X Y))

(EX 17)

In both these cases y will have either 1, 2 or 3 as value
after the cond-expression has been evaluated if we assume that
none of the functions foo, fie and fum performs any assign-

ments of y.

6.7.2.1 Algorithm. The following algorithm is used to find

those variables which will always be assigned in a cond-

expression:

(COND (pl el)
(p2 e2)

(pk)

(P, en))

Let varassinged(form) give those variables which will always

be assigned in form.

a. Let v and x be empty sets. The set v is used for the re-
quested variables and the set
X is used to hold candidates

for such variables.

b. v := varassigned(pl)
x

= varassigned(el)*

* In the case where the clause is of type (p, ), varassigned(e,)

will return the empty set.
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c. Perform for i form 2 to n-1

v:i=vuU (xnNn varassigned(pi))
if

A (pi is known always to be false)
then v := v n varassigned(ei)*

d. if (pn is known always to be true)
*
then v := v U (xn varassigned(en))

else v := v U (xn varassigned(pn))

e. v contains the requested varfiables.

This algorithm works under the assumption that P is not always
known to be false. This cannot appear in REDFUN-2 because such
a predicate will be broken out from the cond-expression into

a progn, as in the example

(COND ((SETQ X NIL))
((PUT A B NIL))
((FOO X) (SETQ Y T)) (EX 18)
((SETQ Y NIL))
(T (FUM X Y)))

which is transferred to

(PROGN (SETQ X NIL)
(PUT A B NIL)
(COND ((FOO NIL) (SETQ Y T))
((SETQ Y NIL))
(T (FUM NIL NIL))))

In the above example both x and y will always be assigned.

* In the case where the clause is of type (pk), varassinged(ek)

will return the empty set.
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6.7.2.2 Setq's reducer. The place in REDFUN-2 where an assign-

ment is discovered is in the setq's reducer-procedure. The
result of the assignment will be stored in the assigninfo-
element in the quoted-expression. The expression

(SETQ X 5)
will result in

(QUOTED (SETQ X 5)
(:VALUE . 5) (EX 19)
:SIDE
NIL
NIL
((X . (:VALUE . 5))))

If the value(s) of the assigned variable is unknown it will
be marked as NOBIN. This assignment information will then be
transferred upwards to all super-expressions, i.e. every form
which performs an assignment will contain that information in

its quoted-expression. The expression
(FOO (CONS (SETQ X A) B) (SETQ Y NIL)) (EX 20)

will, if we assume foo not to pmerform any assignments and no

information about a exists, result in

(QUOTED (FOO (CONS (SETQ X A) B) (SETQ Y NIL))
NIL
:SIDE
NIL
NIL
((X . NOBIN) (Y . (:VALUE . NIL)))

6.7.2.3 The :ADDVALUE-descriptor. In the cases where we cannot

assume that an assignment will always be performed, such as in
the conditionals, it must be marked in the assigninfo-element.
Such a variable is marked by a value-descriptor of the form

(:ADDVALUL . value-descriptor)
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The expression
(AND (FOO X (SETQ X 3)) (SETQ Y 'A))
will result in the following assigninfo-element
((X . (:VALUE . 3)) (Y . (:ADDVALUE . (:VALUE . A))))
If the variable a-list before this expression contains
((X .(:VALUE . 1)) (Y . (:VALUES . (V. X))) ... )
it will after the and-expression be changed to
((X . (:VALUE . 3)) (Y . (:VALUES . (V X 2))) ... )

For x a replacement of the value is performed, but for y an
extension of its value range is made. This extension is per-

formed through an or-reduction of the two value-descriptors.

6.7.2.4 The :SETQVALUE-descriptor. Consider the two examples

(COND ((AND (SETQ X Y) (EQ X 'A) (roo L)) (FIE X))
(T ... ))

and

(COND ((AND X (FOO (SETQ X NIL) L)) (FIE X))
(T ... ))

During the processing of these two and-expressions the variable
X will both be found to be assigned and it will be possible to
extract property information about it which holds in the true-
branch. When information is gathered from the quoted-expression
of the elements in order to build up the quoted-expression

for the whole and-expression it is important to take in con-
sideration the order between the assignment of a variable and

the form giving the latest truectxt-information about it.

If a variable was assigned to the value which is stored in the
truectxt-element, that value-descriptor must be marked by a

:SETQVALUE-descriptor and will appear as

(:SETQVALUE . value-descriptor)
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The two examples will create following truectxt-element in
the guoted-expression for the whole and-expression. The first

example gives
((X . (:VALUE . A)))
and the second example

((X . (:SETQVALUE . (:VALUE . NIL))))

If an assignment will not always be performed, i.e. the case
when the value-descriptor in the assigninfo-element is marked
by :ADDVALUE {(described in 6.7.2.3) it is marked in the same
way in the truectxt-element. In the example

(COND ((AND X (OR Z (SETQ X T))) (FIE X))
the and-expression will cause the truectxt-element
((X . (:ADDVALUE . (:VALUE . T))))

to be created.

6.7.2.5 Specialization, replacement and extension of a value-

descriptor. The three different value-descriptors obtained from
the previous examples in 6.7.2.4 will be treated in different
ways when the new a-list is built up for the true-branch. They

correspond to a specialization, a replacement and an extension

of a value-descriptor.

We define a value-descriptor before the entry to an expression
to be a and the value-descriptor in the truectxt-element to

be B. The new value-descriptor to be used in the true-branch
will then be created by the following table.

operation resulting value-descriotor
specialization and-reduction of a and 8
replacement B

extension or-reduction of a and B8
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A final example. Consider the following a-list

({(X . (:VALUES . (A B C)))
(Y . (:VALUES . (X Y 2)))
(z . (:VALUES . (1 2 3))))

and the expression

(AND (MEMB X '(B C D)) (SETQ Y 'W) (AND L (SETQ Z 4))) (EX 20)

The quoted-expression for this expression will be

(QUOTED (AND (MEMB X '(B C D))

(SETQ Y 'W)
(AND (SETQ Z 4)))
(:VALUES . (WIL 4))
:SIDE
((X . (:VALUES . (B C D)))
(Y . (:SETQVALUE . (:VALUE . W)))| « truectxt-element
(z . (:ADDVALUE . (:VALUE . 4))))
NIL
((Y . (:ADDVALUE . (:VALUE . W)))
(Z . (:ADDVALUE . (:VALUE . 4))))})

The value-descriptors for the variables x y and z to be used

in the true-branch are calculated as follows.

For x a specialization is done of the previous value-descriotor

and of the one in the truectxt-element by an and-reduction.
(:VALUES . (A B C)) A (:VALUES . (B C D)) - (:VALUES . (B C))

For y a replacement of the old value-descriptor is done and

we obtain

(:VALUE . W)

For z an extension of . the value-descriptor will be done through

an or-reduction of the value-descriptor

(:VALUES . (1 2 3)) v (:VALUE . 4) - (:VALUES . (1 2 3 4))
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6.7.3 Transfering of assignment information. The implementation

of the transfer of assignment information is basically as
follows. The setg-reducer discovers the assignment, as al-
ready has been described in 6.7.2.2. Transfer of assingment
information from one argument to the next is done by redargs,

which is simplified defined as

(LAMBDA (ARGS AL TEMP)
(COND ((NULL ARGS) NILX
(T (CONS (SETQ TEMP (REDFORM (CAR ARGS) AL))
(REDARGS (CDR ARGS)
(ADD-ASSIGNINFO AL TEMP)))))))

Transfer of the information from the arguments to the form is
done for pure functions in tryapply, which in principle scans
through the arguments and extracts the assigninfo-information.

For reducer-functions this is done in their reducer-procedures.

6.7.4 Assignments by the function set. A function which can

spoil all work here is set. If we receive a set-expression

and have no knowledge about its first element, all information
about variables must be removed. What must be done in such
situations is that the user must supply information about

which variables can be affected by this set.

Some cases can of course be handled by the set-reducer. The

expression

(SET 'X 10)
is trivial. It will be collapsed and processed further by the
setg-reducer. If the first argument performs a side-effect, as
in

(SET (SETQ VAR 'X) 10)
the side-effect expression is broken out into

(PROGN (SETQ VAR 'X) (SET 'X 10)) (EX 21)

and the set-expression is further processed as above.
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If the first argument to set is of values-type, such as in

the example

(COND ((FOO X) (SETQ VAR 'A))
((FIE X) (SETQ VAR 'B)) (EX 22)
(T (SETQ VAR 'C)))

(SET VAR 10)

we know that one of the variables a, b or ¢ will be set to 10

and the assigninfo-element for the set-expression will be

((A . (:ADDVALUE . (:VALUE . 10)))
(B . (:ADDVALUE . (:VALUE . 19)))
(C . (:ADDVALUE . (:VALUE . 10))))

indicating that a possible value for these variables is 10.

If the first argument is of novalues-type, all variables on
the a-list except those in the value-descriptor must be set to
NOBIN. Nothing certain can be said about the variables in

the remaining cases.

6.7.5 Global variables. In INTERLISP there are global vari-

ables. They can be assigned and accessed by rnlaca*(rgag,
rpaqq) resp. gg£7 but will also be assigned or accessed by
setq and by the variable itself respectively, if the vari-

able is not bound on the parameter stack. The use of rplaca

and car on globals is usually done for efficiency, the stack
does not need to be searched every time the global variable

is accessed, but also because the variable may have been used
locally, i.e. bound as a lambda or prog-variable, and we really
want to access its global value. The first case is not diffi-
cult it is only necessarry to treat such variables as if they
were bound in a global block regarding them as local variables.

The other case can be more difficult to handle.

* Follows the INTERLISP 360/370 implementation.
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It is not always possible to know in a function if a vari-

able will be used as a local or global one. The user can de-

fine that a variable shall always be considered as a global

variable when ambiguity appears.

In REDFUN-2 the implementation is such that if the value is

to be known for a global variable it is bound on the a-list.

To distinguish it from locally bound values, the global vari-

able var will be renamed as var-GLOBAL. The assignment and

access will then be performed as follows:

(SETQ X ...)
(SETQQ X ...)
(SET 'X ...)

(RPLACA 'X ...)
(RPAQ X ...)
(RPAQQ X ...)

(CAR 'X)

X

(when evaluat-
ing the vari-
able)

If x is not defined as global use X,
or if x is already bound on the a-

list use X, otherwise use X-GLOBAL.

Use X-GLOBAL.

Use X-GLOBAL when searching the

a-list.

Seach a-list first with X, if not
stored and if x is defined as global
search for X-GLOBAL.

P

“VARIABLE ASSIGNMENT™
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6.8 EXTENDED FUNCTION CLASS AUTHORITY.

A function will normally be classified as belonging to a func-

tion class.

In some cases this function class must depend on

the actual arguments of the function. For example car is a

pure-function if its argument is a list, otherwise if it is an

atom it belongs to another class and must be treated different-

ly.

6.8.1 Function classes. Here follows a description of the

various classes in REDFUN-2:

PURE

ZXPR

SIDEEXPR

for a function, which does not perform or
depend on any side-effects, and which can be
evaluated at reduction-time if its arguments

have known values.

For such a function redform will perform

tryapplylcar{form],redargs(cdr(form],
al,rctxt],rctxt]

where tryapply was described earlier in 6.4.4
and form, al and rctxt are arguments to

redform.

for functions of expr- or fexpr-type (if the
arguments will be evaluated in the normal
order). The arguments will be reduced. Redform

will perform

cons{car(form],redargs[cdr[form],al,rctxt]]

for an eval-function® performing side-effects.
Redform will perform

sideexpr[car[form],redargs[cdr(form],
al,rctxt],rctxt]

where sideexpr in principle returns a g-tuple.

* In INTERLISP either €Xpr, eXpr*, Cexpr, Cexprkx, Subr or subrt_




FEXPR

SIDETFLXPR

REDUCER

OPEN
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<cons[fn,unquotedlargs]],
applylgetp([fn,VALUEFN] ,args],

:SIDE,

NIL,

NIL,

collected-assigninfo-from-arguments>

for a noeval-function, which does not perform
any side-effects. The form is returned un-

changed.

for a noeval-function for which nothing is
done for its arguments and a gquoted-expression
is returned which marks it to perform side-

effects.

for a function normally with special argument
evaluation. A reducer-property must then be
associated with the function which performs

the necessary reductions.
Redform will perform

applylgetplcar[form],REDUCER],cdr(form],rctxt] .

for a function one wants to open. This includes
beta-expansion where a function call is re-
placed by the function body, open speciali-
zation, where the call is replaced by

an open lambda- or prog-expression, and closed
specialization, where a reduced version of the

function is created and thecall is replaced by
this reduced version.

Reform will perform

expand|[car[form],redargs[cdr(form],

al,rctxt]]
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where expand decides what opening to ner-
form, depending on either a sub-declaration
for the function or an automatic procedure
which decides what is most appropriate in
this situation. The expression to insert in-
stead of the call is returned from expand.

This is discussed further in section 6.11.

6.8.2 Functions belonging to several classes. The function

which performs this classification is extended not only to
classify with respect to a function but also to the whole
form. For those functions which can belong to several classes
a fnclassfn-procedure must be associated with the function and
that procedure can then deside to which class the form belongs.
Some functions belong to different classes demending on the
datatype of its arguments and in this class we have car, which
if its argument is a list .is treated as pure, but if it is an
atom it depends on side-effects - the global assignment of
variables. In that case car has a reducer-property. It may be
desired to treat the function getp, which also depends on
side-effects, in some situations as a pure-function if the
property value is stored on the property list at reduction
time, otherwise it should be treated as a sideexpr-function.
Actually one can in REDFUN-2 declare those properties which

will treat getp as a pure-function.

6.8.3 The function class of cons. A function which is really

troublesome in this case is cons. It unquestionably per-

form side-effects, allocating a new gggg—cell every time it

is called. If we are not performing any side-effects on that
structure created by cons, we can treat it as a pure-function
and consequently evaluate it when its two arguments are known.

If we make rplacd's, nconc's etc later on in the structure we

may not be able to treat it as a pure. A good example of this,
which appeared in our work, was together with the REMREC pack-
age. A recursive function will be translated there into a prog-
expression and the values from the function will be stored in

a gueue.
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This queue is built up by a header and the elements are
nconc-ed into that queue. The header is set up by

(SETQ HEAD (CONS)) (%)
and later in the code values are put into it by
(NCONC1 HEAD ... )

Every time such a function is called we shall need a new header
and a new gqueue, but if cons is treated as pure the REDFUN

package will transform the x-expression to
(SETQ HEAD (QUOTE (NIL}))

Which will have the consequence that every time we enter the
function we shall start to build upon the old queue and an

erroneous result will appear.

This problem is not only valid together with cons. It holds
for all lists which will be treated as constants. If we have
bound a constant list to a variable and later perform side-
effects on it erroneous results can occur, shown by some
examples

(SETQ X '(A B C))
(COND ((FOO Y) (NCONC X '(D E)) (FIE X))
(T (FUM X)))

where the value of x in the truebranch will be changed to
(A BCDE)

and an erroneous result will occur if the a-list is not up-
dated.
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These changes in list structures are not so simple to detect,

as in the example

(SETQ X '(A B C))

(SETQ Y (CONS 'X (CDDR X)))
(NCONC (CDR Y) '(D E))

(FIE X)

A more careful analysis of side-effects performed on list-
structures is desirable but has not been studied in this

project so far.
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6.9 REDUCTION OF PROG-EXPRESSIONS

A prog-expression reduces in vrinciple by giving every state-
ment to redform. If a reduced statement does not contain any
side-effects it can be deleted. A clean-up of prog-variables
no longer used, unnecessary assignments, goto's, labels etc

are also desirable.

6.9.1 Assignments in a prog-expression. The main problem here

occurs when assignments must be taken care of. REDFUN-2 is
built up in such a way that information about assingments is
collected in parallel with the reduction. The traversal in

the code is done in the same order as the evaluator and when

a form is processed all the information necessary to per-

form the reduction has already been collected. This works as
long as we are not processing prog-statements. In a prog the
evaluator can take several different paths which makes it
difficult to collect all the information before the reduction
takes place. If there are no loops in the prog it can be solved
if one reduces the statements in such an order that all state-
ments which can be evaluated before one arrives at a state-
ment a are reduced completely before a is reduced. When loops
are included an anlaysis must be performed to find those
variables which can be assigned in the loop and for them only

a limited amount of information can be found and used.

“pro6 REDUCTION"
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6.9.1.1 Prog-expressions without loops. Let us follow an

example containing a prog without any loops.

(PROG (X Y)
START
(SETQ Y 5)

(OR (FOO X) (GO B))

(SETQ Y 10)

A (PRINT Y)

(RETURN ...)
B (OR X (SETQ Y 7))

(GO A))

We assume that these assignments are the only ones performed

to the variable y.
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We can first illustrate the goto-structure better by a directed
graph. The statements between two labels forms a block and is
represented as the code in the graph.

START

(SETQ Y 5)

(OR (FOO X) (GO B)) |——>|(OR X (SETQ Y 7))

(SETQ Y 10)
R
A | (prINT Y)
Fig 6.9.1 (RETURN. . .)

The first step is to build a table of this structure

label come from
START -

A (START B)
B (START)

A topological order of this graph gives us an order in which

these blocks must be reduced and one such order is

START, B and A
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When a go-statement or a label is reached during the re-
duction the information which holds about variables is
associated with that label. When we proceed the reduction in

a new block we collect that information. For each variable for
which there is information we perform an or-reduction of its

collected value-descriptors.

At label A in the example it holds that when comming from
START

Yvalues= t1o}
and from B
Yyalues™ {57}

and the or-reduction gives that

yvalue5= {57 10}

holds at the label A.
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6.9.1.2 Prog-expressions with loops. When one or several loops

occur in the prog an analyses is performed to find those vari-
ables which are assigned inside a loop. Assume following

directed graph representing a prog-expression.

START

(SETQ X 10)

-

(F1 X V)

c B

(SETQ Y (FOO X)) (SETQ X (ADD1l X))

: —
N o J

N

(PRINT X)

Fig 3.
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The three blocks A, B and C form a loop. There are two vari-
ables x and y which may be assigned in that loop. When we en-
counter the block A during the reduction we must here assume

these two variables to have unknown values.

Some information can be gathered about a variable in a loop
and be used by the system at the reduction. If a variable is
assigned to constant values or to values of a certain datatype

that information can be used. Assume following graph

START

(SETQ X 1)

W3

(OR Y (SETQ § 2))

Fig 4.

AY}

We can here use the fact that x has the value 1 or 2 at the
entry to the block A.

The order in which the blocks are reduced is also here deter-
mined by a topological order, but all blocks in a looo are
treated as one single block. The blocks inside a loop are then
also ordered. The blocks in the example described in fig 3.

are ordered as
START, A, C, B, E and D
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6.9.1.3 Some problems occurring in this method. The analysis of

the assignments found inside a loop is performed without using

any knowledge about the variables. Parts of the code which

will be eliminated can contain assignments which ought not to

be included in the analysis. An example of such a case is

(PROG (X Y)

LOP

(COND ((EQ X T) (SETQ ¥ 1)))
(COND ( (NULL Y) (FIE X))
(T (FUM X)))

ZGO LOP)

)

We assume no other assignments to the variables x and y can

occur. The analysis detects the loop
able which may be assigned there. At
variable y is assumed to have either

result after the reduction will then

(PROG

(X Y)
LOP

(COND ((NULL Y¥) (FIE NIL))
(T (FUM NIL)))

(GO LOP)

and finds y to be a vari-
reduction of the loop the
NIL or 1 as value. The

be
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The first cond-expression was eliminated and therefore also
the assignment of the variable y.

The second cond-expression could be further reduced, now when
we know that the only possible value for y was NIL. This pro-
blem can be solved in this case if we perform another ana-

lysis and reduction step in the prog-expression.

Another case which appeared in the application of REDFUN-2 to

the iterative statement is described in section 7.4.3.3.

The same problem can also occure in the analysis of loops.

Assume the example

(PROG ( ... )

LOP

EOR T (GO LOP))

)

We assume that the only (GO LOP) appears in the or-reduction.

The analysis will assume a loop here but in the reality we can
never enter the loop. This can also be solved by performing

one more analysis and reduction step.

6.9.2 Postprog-transformations. After the reduction of a prog-

expression it is normally desired to perform a number of extra
transformation steps of more or less cleaning-up nature, e.g.
removing prog-variables not used in the prog, removing
assingments to variables which will never be accessed, cleaning

up the goto-structure etc.
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There are lot of transformations which could be desirable to
perform for a prog-expression, but different applications need
different transformations. In the present version of REDFUN-2
some basic transformations are included and new transformations
can be included when they are needed. Following transformations

are included

a. Find prog-variables which never will be accessed in the
prog-expression or used as a free variable underneath.

These variables can be deleted from the prog-variable list.

b. Remove assignments to variables which are never accessed.
Such assignments can remain after constant propagation,
i.e. when a variable is assigned to a constant value and
that constant has replaced all occurrences of the variable.
If the form beeing assigned contains side-effects the form

must be left in the code.

c. Cleaning-up the goto-structure and removing unnessesary
labels.

Other transformations of prog-expressions are also performed
by collapser-rules. We can here mention the rule

(PROG NIL stm1 stm2 .

{PROGN stml stm2

if no returns are performed in stm,, i=1l,n and there is no

(RETURN stmn)) -

.. stm_)
n

gotos involved.

Some transformations and anlaysis can be made by programs
automatically generated by PMG (RIS74). Around a skeleton,
which in principle performs the code traversal, the user can
specify to PMG what actions he wants to be performed at
specified points in the code, for example an action performed
for every variable encountered in the code, an extra overation
for a certain function etc. This user supplied code is then
integrated in the skeleton or put as "macros" and a complete
program is generated. An advantage in using PMG-generated

procedures is that they all follow the same conventions.
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For functions with special argument structure these "macros"
indicate how the traversal must be done. The user must di-
fine his own "macros" if such functions have to be processed

in the code.

In REDFUN-2 the postprog-transformations a. and b. have been
generated by the PMG-system.



146

6.10 OPENING OF FUNCTIONS

6.10.1 Open classes. Here we shall discuss both beta-expansion

and specialization of functions. In the present system the

following cases can occur

BETA beta-expansion

LAMBDA an open specialization by a lambda-expression
PROG an open specialization by a prog-expression
REDUCED a closed specialization

These are sub-declarations to the function class OPEN, and

called open classes.

These concepts were defined in the section on REDFUN. New
here is the PROG-case, which is only a variant of open specia-

lization.

One can notice here that BETA and LAMBDA correspond to INTER-
LISP's substitution and open macros resvectively for the com-
piler, although the substitution of the lambda-variables is
done by the compiler without taken care of special functions
with non-standard argument structure. The third macro variant
for the INTERLISP compiler is the computed macro, which in
principle corresponds to the code that REDCOMPILE produces.

6.10.2 Examples of open classes. Let us follow an example.

Suppose foo is defined as

CLAMEDA (X Y Z)
(COND LC(ATOM X)
(COND ((NULL Y)

NIL)
(T (FIE X Y 21

(T (FOO (CAR X)
(CAR Y)
Z1
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6.10.2.1 Beta-expansion. A beta-expansion of

(FOO 'A (CAR L) NIL)

will result in

(COND' ((NULL <¢CAR L))

NIL)

(T (FIE (QUOTE A)
(CAR L)
NIL)))

and can be done because X in foo is known to be an atom, so
the recursive call to foo again has been eliminated. Nor were
there any side-effects in the arguments to foo which could
disturb the substitution. Another criteria for allowing beta-
expansion is that the lambda-variables in foo are not used
freely in any function called from foo, so we must assume

fie not to use any variables freely in this example.

Although the first argument to foo is a list, but with known
value, beta-expansion can be performed. The opening will then

be made recursively.
(FOO '((X)) (CAR L) NIL)
will be replaced by

(COND (CNULL (CAR (CAR (CAR L1

NIL)
(T (FIE (QUOTE X)
(CAR (CAR (CAR L))

NIL)>))

At beta-expansion the code can grow very quickly, especially
in cases where the expansion is made recursively or on several

levels.

"[>-EXPANSION"
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6.10.2.2 Open specialization. For the expression

(FOO 'A (PRINT (CDR L)) NIL)

a beta-expansion is not appropriate. The form will if it is
substituted in the body be evaluated twice and then per-

from the print twice, which is not what one normally wants to
be done. An open specialization solves this and the code would

then be

(CLAMBLDIA (Y)
(COND ((NULL Y)»
NIL)
(T (FIE (QUOTE A)
Y NIL]
(FRINT (CDR L)))

or by a prog-expression

CFROG L(Y (FRINT (CDR L1
(RETURN (COND' ((NULL Y)
NIL)
(T (FIE (QUOTE A)
Y NIL]

It is assumed also here that fie does not use x or z freely.

If that was the case these variables must be left in the

the argument list.

COND(N]

variable list and the arguments to bind them must be left on

[

~ 5T)(QU0
] =

“OPENING A FUNCTION"

.
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6.10.2.3 Closed specialization. If nothing is known about the
first argument and the third argument is a constant, a closed

specialization 1s appropriate. For the expression
(FOO (CDR L)} AL 'Q)
a new function foo/1l will be generated

CLAMEDA (X Y)
(CONIl C(ATOM X)
(COND' ((NULL Y)
NIL)
(T (FIE X Y (QUOTE Q1
(T (F0OO/1 (CAR X)
(CAR Y1

The foo-expression is replaced by

(FOO/1 (CDR L) AL)

These examples show that it is not always trivial to say how

a function ought to be opened. In many cases the usage of the
function is controlled by the user and a suitable opening class
can be given, but in other cases it is difficult and errors

can easily be introduced. There is also the balance between
execution and size of code to consider. If the code grows,

the locality in the code can get worse, which can affect the

execution of the code.

6.10.3 Automatic procedure to decide open class. In REDFUN-2

the user can either give the sub-declaration for an onen-
function himself or let the system use a procedure to decide an
appropriate class. In the first case the user must be aware

of the problem which can appear if side-effects etc. are in-

volved.
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The open class procedure makes the decision depending on the

following information:

a. side-effects among the arguments?
b. is the function directly recursive, i.e. the call is
done to itself in its function body or in a function

which will be inserted in the body through beta-expansion?

c. are there any assignments of the lambda-variables in the

function body?

d. are any of the lambda-variables used freely in functions

calls from this one?
The desirable ordering is first beta-expansion, then onen

specialization and last closed specialization.

Case a. above is simple: the arguments have already been re-
duced an information about side-effects can be found in the
g-tuple. For cases b. and c. one could go ahead and directly
perform an analysis in the function body whether the function
is recursive or not and check for assignments. The problem with
such a scheme is that we include parts of the function body in
our analysis, which may later be eliminated. This gives a
worst case analysis. In the earlier example the function foo
could in such a case only be opened to closed specialization.
A slightly better analysis will be done if we first make a re-
duction of the function body with those lambda-variables whose
values we know something about. Information about assignments
will be collected automatically and a check whether the resulted

body is recursive is simple to perform.

The procedure works as follows:
Suppose we have
fn[argl,argz, feey argn]
which must be opened and the definition
fn[xl,xz, ey xn] = fnbody

The arguments arg, have been reduced when entering this

procedure.
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a. Will any of arg; perform a side-effect? In this case a
beta-expansion will not be performed.

b. Reduce fnbody through redform , with the a-list extended
by those lambda-variables b9 bound to its corresponding
value-descriptor for arg, . If no value-descriptor is
available the variable is bound to NOBIN. We shall
receive a reduced body fnbody'.

c. Check in fnbody' whether a recursive call is made to fn.
If so, a closed specialization must be performed.

d. Will any li be assigned in fnbody'? If so, a beta-
expansion cannot be done.

e. Does any function called from fn use any x; as free
variable? In this case a beta-expansion cannot be per-

formed.

From this procedure and the desirable ordering an appropriate

open class will be given.

This procedure will in some cases choose oven specialization
although beta-expansion could be used. When side-effects occur
in the arguments a beta-expansion can be done if these forms
are to be substituted in the body in such a way that when the
body is evaluated the side-effected forms will only be eva-
luated once and in the right order with regard to other forms
which depend on side-effects performed there. There are other
cases too where the procedure makes a bad choice, but it seems
to be rather complex to perform the analysis in order to cover

such cases.

For beta-expansion the function body fnbody' must be reduced
once more through redform, where the remaining lambda-variables
are replaced by actual argqument forms. This must be done to
allow collapser rules to be invoked, which in its turn can
cause further reduction to be done. The resulting body will

be inserted in the code.
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For open and closed specialization the function body fnbody'
must be embedded in a lambda- or prog-expression, where those
variables which were not affected in steps a, d or e in the

above procedure could be removed.

6.10.4 Substitution package. A problem in REDFUN was that beta-

expansion in some cases could be very ineffective. There were
two problems. First, substitution was made in parts of the
code which would later be eliminated. Some modifications

there were done ih order to let conditionals be processed more
effectively. The second problem was that arguments which had
just been reduced after substitution in the code were reduced

again.

The first problem is solved if we can perform the substitution
and the reduction in parallel. This is done in REDFUN-2 in
such a way that the lambda-variables in the function to beta-
expand are bound on the a-list to the forms which will be in-
serted there. There is a subst-descriptor which holds such a

form and it is then redform's task to perform the substitution
when the variable is encountered in the code. The whole sub-
stitution package can then be thrown away. A subst-descriptor
looks like

(:SUBST . form)

The second problem is solved by the fact that every argument
is enclosed in a guoted-expression and is not therefore re-
duced any further. By collapser rules however, one can force

a reduction to be performed, which is necessary in some cases.
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Some minor problems must be taken care of in this scheme. Con-

sider the expression
(FOO X)

where x's value-descriotor is
(:VALUES . (1 2 NIL))

and foo defined as

(LAMBDA (L)
(COND ( (NUMBERP L) (ADD1 L))
(T 1)))

When the cond-expression is encountered at reduction the a-

list contains

((L . (:SUBST . (QUOTED X (:VALUES . (1 2 NIL)))))
(X . (:VALUES . (1 2 NIL)))

In numberp the variable 1 is substituted for x and information
about x to be used in the true-branch tells us that x must
be a number there. At addl the a-list is

((Xx . (:VALUES . (1 2)))
(L . (:SUBST . (QUOTED X (:VALUES . (1 2 NIL)))))
(X . (:VALUES . (1 2 NIL)))

)

Here also 1 is substituted for x, but when a variable is in-
serted in the code a scan must be performed on the a-list to
see if that variable has got another value-descriptor. In this
case that descriptor must naturally be used instead, so addl

need only be evaluated for the values 1 and 2.
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Another problem. Suppose we have the expression
(FOO (EQ X 'A) (FIE X))
and foo is defined as

(LAMBDA (B L)
(CoWD (B L)
(T ...)))
When b is substituted for the eg-expression it is in a

position where a form should be reduced also to extract in-

formation for its true- and false-branch. No reduction will be

performed after the substitution so that information must al-
ready have been extracted. This will only be done if a con-
text reduction pattern‘to foo is given saving that its first

argument must always extract such information.

"CAR COLLAPSER"

* See section 6.12.5



6.11 COLLAPSERS.

Some extensions of collpsers have been performed. In REDFUN a
call to redform was always performed again after a collapsing
rule had been invoked which caused efficiency problems and

is solved in REDFUN-2 by the user explicitly performing such
a call in the collapsing rule. This is done for the rule

(APPLY (QUOTE fn) (QUOTE argl) ... (QUOTE argn))) -
- (fn argl ... argn)

but not for
(CAR (CAR X)) - (CAAR X)

There is also a possibility of escaping from a collapsing rule
by returning the atom NOCOLLAPS, which solves the problem dis-

cussed in 4.1.4.1. The expression
(APPLY* (QUOTE AND) X Y)

cannot be collapsed.

In some cases one must set restrictions when a collapsing rule

can be used. The rule
(CAR (LIST X Y)) -» X

can only be used under the assumption that Y does not verform
any side-effects, in which case either the form is returned
as it is or if one wants to avoid the conses an expression

such as
(PROGL X Y)

is used. However this introduces a problem in REDFUN-2. When
the call to the collapser is made, all information about the

sub-expressions in the form to be collapsed is lost.
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6.12 REDUCTION IN CONTEXTS.

6.12.1 Reduction in contexts. The previous sections described

how information is extracted from the forms being reduced. Such
information includes the value(s) of the form and properties

of variables to be used in the true- or false-branch, and is

stored in a gquoted-expression. Getting this information is in
some cases rather time-consuming. It is therefore important
to prevent this computation from being performed if we know

that this information will never be used.

Examples.

- In a prog-expression the values of the statements are
of no interest and need not be calculated.

- Consider

(COND ((MEMB X Y) (FOO X))
(T (FIE X)))

and that x's and y's value-descriptors before the cond-
expression are
(:VALUES . (A B C)) resp. (:VALUE . (A X C Y))

For the memb-expression we are here only interested
whether it is true or false and not in the true-case
what values made it true. The arguments to memb are
known and will be classified to "allknownvalues" (see
6.4.4). All argument combinations must be calculated.
Here we can interrupt that calculation when we have got
at least one true and at least one false value, in which
case we know that the memb-expression will not have the
same boolean value and unnecessary computations are

saved.
If however we perform
(SETQ 2 (MEMB X Y))

the values are of interest and should be calculated if

possible.
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6.12.2 Contexts. Depending on its position in the code a form

will be reduced with respect to a context. We have following

contexts:

- value context, the value(s) of the form had to be cal-

culated if possible

- boolean context, it is only needed to calculate if the value

is true or false if possible.

- novalue context, the value had not to be calculated.

The extraction of variable properties is not useful to per-
form if the form is in such position in the code that these
properties never can be used. For the value context and the
boolean context we can also include there if such properties

had to be extracted to be used in the true-branch, false-

branch or both.
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6.12.3 Context table. The different ocntexts can be represented
in a table with abbreviated context manes which will be used
in the text.

value boolean value no value

Properties about
variables is to
be extracted to vT BT -
be used 1n the
true-brauch

Properties about
variables is to
be extracted to VF BF -
[be used in the
false-branch

Properties about
variables is to
Ee extracted to

e used both in
the true-branch
and the false-
lbranch

VTF BTF -

Table 3. Context table

We shall first give examples of forms in these different con-
texts and then give formulas showing how the context changes
for the arguments in conditionals, logical functions and

some other functions.



159

6.12.4 Examples of a form in the different contexts:

VALUE (V) The cond-expression in
(PRINT (COND ((NULL L) 1)
(T 2)))
NOVALUE (N) The cond-expression in
(PROG (X)

(COND ((NULL L) (SETQ X 1))
(T (SETQ X 2)))

BOOLEAN (B) The eg-expression in
(COND (... ...)
((OR FLGA FLGB
(EQ X ¥Y)) ...))
VALUE + TRUE BRANCH (VT) The variable y in

(AND A B (SETQ X Y) ...)

VALUE + FALSE BRANCH (VF) The eg-expression in
(OR A B (EQ X 10) ...)

VALUE + TRUE and FALSE- The variable y in
BRANCH (VTF) (COND ((SETQ X ¥) ...)
(T ...))

BOOLEAN + TRUE BRANCH (BT) The eg-expression in
(AND A B (EQ X 'A) ....)
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BOOLEAN + FALSE BRANCH (BF) The eq-expression in
(PROG (X)

(COND ((NULL L) (SETQ X 1))
((EQ X 'n))
(T (FOO X)))

BOOLEAN + TRUE and FALSE The eg-expression in
BRANCH (BTF) (COND ((EQ X 'A) ...)
(T ...))
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6.12.5 Changes of contexts. We shall here show how the context

changes in some different functions. For the function progn
it can be described as

(PROGN a ... a B) a
B = ctxt

1]
4

which is interpreted as:

When a progn-expression is reduced in the context ctxt then
all the arguments but the last one will be reduced in con-
text N no value context and the last one in context ctxt.
The interpretation of a capital in order to describe a
context is found in table 3 in section 6.12.3. The con-
text ctxt is used as the context in which the whole ex-

pression is reduced in.

For the similar functions progl and prog2 we get

(PROG1 a B ... B) a = ctxt
B =N
(PROG2 a B a ... a) a =N
B = ctxt
Logical functions.
(AND ay a, ... ap_; B) BTF if ctxt = VT,VTF,BF
= {or BTF

a
1
BT in remaining cases

a BTF if a, = BTF and falsectxtflg, = true
i+l = 1 1 —

BT if a; = BT or falsectxtflgi = false
-
v VF
vT VTF
B =4 1f ctxt = and falsectxtflg _, = false
B BF
BT BTF
\ctxt in remaining cases
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To extract information for an argument to its falsectxt-element

in an and-expression is only useful i1f such information is

available for the same variable in all arguments. A flag

falsectxtflg checks if there is at least one variable for

which this holds and otherwise signals to change context. The

flag is initialized to true.

Example

(AND L (EQ X 'A) (EQ Y 'B))

If the expression is reduced in a BTF context

L is reduced in BTF

(EQ X 'A) also in BTF

(EQ Y 'B) only in BT

This has been discussed earlier in section 6.5.5.1

(OR a B)

1% - %-1

%1

i+l

VTF VTF or VT
VF V or VF
= if ctxt =
BTF BTF or BT
BT B,N or BF
ay if truectxtflgi_l = truectxtflg
=4{VF if ctxt = VTF
BF if ctxt = BTF
( (~
v vT
VF VTF
= if ctxt = <« and truectxtflg
false
B BT
BF LpTF
btxt in remaining cases

In the same way as for and in its false-branch, a flag

truectxtflg is used to

branch.

i

n-1%

signal a context change for its true-
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(NOT a) B if ctxt = V or B
BF if ctxt = VT or BT
a = <BT if ctxt = VF or BF
BTF if ctxt = VTF or BTF
N if ctxt = N

Conditionals.

(COND (al 8) ay = BTF
: g = ctxt
(v;)
) BF B,BF or N
: VF V or VF
(dy 8)) v = if ctxt =
BTF BTF or BT
alt. (Yn)) VTF VTF or VT

BTF if ctxt = VF,VTF,BF or BTF

n BT in remaining cases
Yn = ctxt
(SELECTQ a a = v
(= 8) B = ctxt
(= 8)
g)
Prog-expression
(PROG ( (= B) ...) a= N
a g = v
Yy = ctxt
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In cond, selectg and prog, B stands for the whole implicit

progn-expression, so if there is more than one form in that
position they are reduced in an N context with the exception
of the last form.

Assignment

(SETQ - @) \ if ctxt
VT if ctxt = VT or BT
VF if ctxt = VF or BF
VIF if ctxt VTF or BTF

V or B or N

For other functions a context reduction pattern can be

associated. It is simply a list describing the context each
argument should be reduced in. This pattern contains either
an abbreviated context name from the table 3 or a special

element

$RCTXT meaning the context the whole form is reduced in,

$VALUE as $RCTXT, but if the whole form is reduced in a
novalue-context it means V, or in a boolean con-
text where the corresponding value context is

chosen.
Examples

PUT has pattern (N N $RCTXT)

RPLACA has pattern (V $VALUE). This pattern is used
when the first argument is an atom, when a global
assingment is done. The value of the second argument

is then of interest.

By default a function will change context as

(FN o ... a) a = V

In appendix II is shown an example how these contexts changes

in an expression.
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7. A NEW APPLICATION AND NEW EXPERIMENTS WITH REDFUN-2

In this chapter we will first briefly discuss macros and
especially macros in the INTERLISP system. The reader who is
familiar with this can continue reading at section 7.3. In

that section there is a discussion of how macros used by the
INTERLISP compiler can automatically be generated and orocessed
before compilation. The next section reports an experiment

with the REDFUN-2 system on a fairly complex program. This
program was written without any knowledge about our partial
evaluation methods and gives a good idea about the complexity
of code the REDFUN-2 system can manage.

7.1 A PARTIAL EVALUATOR AS A MACRO EXPANDER.

A macro in a programming language is normally a number of
statements in that language, which will be substituted into
the code instead of the macro call. Mast assembly languages
have macro facility and can also be found in high level
languages. The macro expansion is normally performed in a pre-
step before the actual assembling or compiling. A macro can
normally be used with parameters and special macro or assembly
variables are used to conditionally expand them.

As shown earlier in the report, opening of functions and
beta-expansion is a kind of macro-expansion. By partial eva-
lutation the macro can be expanded conditionally. It is inter-
esting to notice here that a user of a macro needs to dis-~
tinguish between macro variables used at expansion time and
those variables used when executing the code. In partial eva-
luation the user need not really separate these two types of
variable usage and this task is taken over by the partial

evaluator.
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In this new approach to viewing macros we can see every funtion
or procedure as a macro candidate. Many implementations suffer

today because a function or procedure call is rather expensive
and the use of procedures is in many cases avoided for effici-

ency reasons. The use of procedures normally gives a more
readable code, easier to maintain and debug. When the program
goes into production simple procedures for which the over-
head of performing a function call is high, can be treated

as macros and expanded by the compiler or in a pre-step.

7.2 MACRO-EXPANSION IN THE INTERLISP SYSTEM.

Before compiling, a number of functions in INTERLISP are ex-
panded through macros. Map-functions are expanded to prog-
expressions and can therefore be more efficient when compiled.
The user can also introduce his own macros for functions he

has defined. In some LISP-systems there is also a macro facilty
whereby the code is expanded at evaluation time, but this will
not be discussed here.

The macros in INTERLISP are of three kinds:

- open macros. The lambda body is inserted directly in the

code and corresponds in REDFUN-2 to an open specialization.

- substitution macros. The lambda variables are substituted

for the arguments in the function body which is then in-

serted in the code. This corresponds to beta-expansion.

- computed macros. The code to insert is calculated by the

macro and corresponds to a function generated by
REDCOMPILE (described in 4.1.5)

One can notice that the substitution in a substitution macro
is simply done through subpair, i.e. all occurrences of the
atom, which corresponds to a lambda-variable, replaced regard-
less of whether it acts as a variable or not. This can natur-

ally introduce errors as in the following example.
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Suppose

(LAMBDA (X) (SELECTQ X

(X 'A)
(Y 'B)
'C)))

is a definition of a substitution macro for foo. The expression
(FOO L)
will be expanded to

(SELECTQ L
(L 'A)
(Y 'B)
'C)
where the substitution of the X in the first case statement

in the selectq is erroneous.

The reason for using macros when compiling is obviously to re-
move function calls. For an open and substitution macro it is
simple to give the function definition as a macro. One must

be careful not to give recursive functions as macros. Side-
effects and the way substitution is performed in the sub-
stitution macro also require caution. A computed macro is nor-
mally more complicated to write. It is important that the
original function is consistent with the computed macro and
when the original definition is changed the macro must be re-

written appropriately also.

7.3 DISCUSSION OF MAP-FUNCTIONS (APPLICATION H1)

Before compilation a map-function is expanded through a com-
puted macro into a prog. If one looks at the macro definitions
of a map-function it seems rather complex and it is somewhat
difficult really to find out how it works. A number of errors
in these definitions have occurred in different versions of
INTERLISP. The macro has not been consistent with the parent
functions definition. Erroneous code has been generated if the

function which is applied to each element is of nlambda-type.
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This has been the case both with INTERLISP/10 of the version
used some years ago, INTERLISP/360-370 and also in the LISP
compiler developed by Urmi (URM77). Compilation of the fune-
tion notany has also been erroneus on INTERLISP/360-370 if
there was no third argument in the call. This shows the
difficulty of writing a computed macro, which in all different
cases which ¢an appear, is consistent with the definition.

Our approach here is instead to generate the macros auto-
matically. The steps could be as follows:

a. Write a map-function with a recursive definition. This
should be the only version to be maintained.

b. Run this recursive version through a recursion remover,
e.g. REMREC (RIS73) and an iterative version is generated.
This version can be compiled and used as the system func-

tion

c. During compilation of a map-expression, a partial eva-
luation of the iterative version in LISP format with
regard to the arguments can be performed. The result
could then be compiled.

Partial evaluation in step c. can seem a little inefficent
to perform every time and a redcompilation of the iterative
version in LISP format is desirable.

Using this scheme there is only one version to maintain, the
recursive version, and all other versions are generated auto-
matically. The only problem which remains is of course to be
sure that the various program generators generate correct

programs.

One can go further. Instead of defining all these different
map-functions one could write one or a number of more general
maproutines and then by partial evaluation generate a recursive

version for each of these basic ones.
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Appendix III shows some examples of these different steps. The
function mapcar was defined recursively and the various
versions were generated and processed. The other map-functions
follow the same scheme but have not been run through these
steps. The REDCOMPILE system could not properly generate code
for the prog-expressions but with some help it worked in this
test.

7.4 EXPERIMENTS WITH THE ITERATIVE STATEMENT (APPLICATION H2)

7.4.]1 Description of the application. The iterative statement,
based on the one in CLISP (TEI74 section 23) has been im-
plemented as a LISP program by Jim Goodwin during his stay at

Link8ping University. The program can handle a large number of

variants of such statements as.

(FOR I FROM 1 TO 10 DO (PRINT I))
(FOR I FROM 1 TO N BY 2 SUM I)
(WHILE (LESSP I 5) DO (FOO I) (SETQ I (SUB1 I)))

and a more fancy one as

(FOR X IN L BIND Y FIRST (SETQ Y 0) DO
(IF (ATOM X) THEN (SETQ Y (ADDl Y)))
FINALLY (RETURN Y))

which returns the number of atoms in a list.

The program is implemented in two steps.

1. The iterative statement is parsed and during the parsing 32
variables are bound to values which fully describe the

statement.

2. A prog-expression is set up in order to bind local and
loop variables from the statement. It contains only a

call to the function which executes the statement. All
the variables set up in step 1 are then free vari-

ables in this egecutor function. The prog-expression
is then evaluated and the iterative statement per-

formed.
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This implementation of the iterative statement differs from

the one in CLISP, where the statement is parsed directly into
LISP code. This translating is only performed once, the first
time the iterative statement is encountered in the code during
evaluation. A problem with this solution is that on must keep
two different versions of the statements. The translated version
should be invisiable to the user and therefore the editor,
prettyprint routines, file package etc. must be able to handle

these two versions correctly.

We shall not discuss these two different approaches but only
establish the fact that we have the package written by Jim
Goodwin and see what can be done with it. In an interpreted
environment one can let the parsing and the execution remain
as 1t is, although it can seem a little inefficient to per-
form the parsing every time the statement is evaluated. It is
more serious when the iterative statement has to be compiled.
In such code it 1i1s unsatisfactory to parse and execute the
statement in this manner. One line of approach is to write a
macro for the statement and we come back to the problem that
we have different versions of the program to maintain.

The method we use is instead to let the program remain as it
is as the only version to be maintained. At compiling time an
iterative statement will be processed as follows. Perform the
parsing and create the simple prog-expression. Beta-expand the
call to the executor and its sub-functions and partially eva-
luate. Hopefully the result will be a specialized version of
the executor which corresponds to this iterative statement
and which can be efficiently compiled.

These experiments are also a good test of REDFUN-2, especially
since the program was written by an expert LISP programmer,

and without any knowledge of REDFUN-2 or our partial evaluation
ideas.
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7.4.2 Performance. The parsing step is left aside here and the

point of interest is the executor functions. Appendix IV shows
the LISP code for these functions and illustrates the com-

plexity of the code we are operating on.

These examples has been run through the system succesfully.
The problems which occurredcould easily be fixed and they are
discussed in section 7.4.3. The iterative statement is rather
complex in itself and covers many possibilities and it is
difficult to say if REDFUN-2 has processed all the different

cases which can appear, and in a satisfactory way.

We start by showing the results from the first two examples

given before.
Example 1
(FOR I FROM 1 TO 10 DO (PRINT I))
Reduced code from REDFUN-2:

(PROG (RANGE:LEFT I)

(SETQ RANGEILEFT 1)

(SETR I 1)

$$LF

(SELECTQ (GREATERF RANGE:LEFT 10)
(T (GO $s$0UT))
NIL)

(PRINT ID

(SETQR I (SETQ RANGE!LEFT (PLUS RANGE:LEFT 1)))

(GO $sLP)

$$0UT

(RETURN NIL))
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Example 2
(FOR I FROM 1 TO N BY 2 SUM I)

Reduced code from REDFUN-2:

(FROG (RANGE:LEFT TO:LEFT I ITERTMF ITER:VALUE)
(SETQ RANGEILEFT 1)
(SETR I 1)
(SETQ TO!LEFT N)
(SETQ ITER:VALUE 0)
$SLF
(SELECTQ (GREATERF RANGE:!LEFT TO:LEFT)
(T (GO $%0UT))
"NIL)
(SETQ ITERTMF ID
(SETQ ITER!VALUE (FLUS ITER!VALUE ITERTMF))
(SETQ I (SETQR RANGE!LEFT (FLUS RANGEILEFT 2)))
(GO $$LF)
$$0UT
(RETURN ITERIVALUE))

We may clarify some details of how the iterative statement
works in this implementation. We can see from the examples
that there are two loop variables, the external one given in
the statement an in this case i, and an internal variable
range:left. Both are increased in every step, the external one
is used when the loop body is executed and the internal one
only to control the loop. The upper bound for the loop is
bound (in ex 2) to a variable to:left, which is used when
checking the exit condition. This scheme prohibits the user
from changing the loop-conditions in the loop, although the ex-

ternal variable i can be changed.

On these assumptions the code in these examples is nearly

as good as one can write it,
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7.4.3 Detected problems. We shall now discuss some problems

which arose, which cannot be generally solves by REDFUN-2 and
the actions taken to overcome these problems. These are items

I; in the figure in section 3 of the thesis.

7.4.3.1 Unrolling of prog-expressions.

a. The problem.

Among the subfunctions for the executor there was one function,
segmap, which was written as a prog-expression. The function
was defined as

CLAMEBDA (kXL %%R FN)
(FROG (%XxV)
XXLF (COND
(CEQ XXL XXR)
(RETURN xxV))
((NLISTF %%l.)
(ITERROR SEGMAF)))
(SETQ XXV (AFFLYX FN (CAR XXxL)))
(SETQ %%L (CDR %%L))
(GO %%LF1)

A typical call to the function is
(SEGMAP ' ((PRINT I) (SETQ I (ADD1l I))) NIL (FUNCTION EVAL))
Actually, this is the function which executes the body in the

iterative statement.

This function should be opened, but REDFUN-2 can only per-
form an open specialization and leave the prog-expression as
it is. The first argument, however, is a constant list and it
would therefore be desirable to perform unrolling of the prog-

expression and receive

(PROGN (PRINT I) (SETQ I (ADDl I)))
when expressions like

(APPLY* (FUNCTION EVAL) ' (PRINT I))
have been collapsed to

(PRINT I)
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b. Analysis of the problem.

To unroll a loop is to repeat the statements in the loop se-
quentially and to perform appropriate substitutions of the
loop-variable, described by the example

(SETQ I 5)

LOP

(COND ((EQ I 7) (GO ON)))
(PRINT I)

(FOO I)

(SETQ I (ADD1 I))
(GO LOP)
ON

can be unrolled to

(PRINT 5)
(FOO 5)
(PRINT 6)
(FOO 6)

In arbitrary loop-structures unrolling is a difficult task to
perform, if it is possible at all. The difficulty is to
identify the loop variables and the actions performed in every
iteraton of the loop. For map-functions or for-expressions,
such as in the iterative statement, it is simpler to do this
because the loop variable is explicitly given in the state-
ment or is implicitly given through the implementation (for
map-functions) . Naturally one could have an analysis program
which could detect simple structures which directly corre-
spond to a for-loop or the like, and perform unrolling f r

themn.
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c. Temporary solution.

This problem can be solved if we define segmap recursively,
simply as
CLAMEDA (XXL XXR FN XkV)
(COND

CCEQ XKL XXR)
*%V)
CONLISTF X¥L)
(ITERROR SEGMAF))
(T (SEGMAF (CLIR X%xL)
XXk FN (AFFLYX FN (CAR %xL1)

If we define segmap now to belong to the function-class OPEN
and open-class BETA, REDFUN-2 will recursively beta-expand it

and the desired result will be achieved.

This caused, however, another problem which is discussed next.

Remark. This was the only change performed in the original
code in order to be able to process it by REDFUN-2.
The author of segmap has further remarked that the
function was written iteratively in the first place
mainly because the existing compiler did not handle
recursion efficiently, i.e. lacked recursion-to-prog

conversion.

7.4.3.2 Beta-expanstion.

a. The problem

The following case arose when the function segmap was
recursively beta-expanded. When a recursive call to segmap is
beta-expanded, the fourth argument will never appear in the
resulting code if another recursive expansion follows. This
happens because the variable **v does not exist in the third
branch of the cond-expression. Unfortunately, if there is a
side-effect in this fourth argument, the side-effect disappears

also, incorrectly.
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b. Analysis of the problem

At beta-expansion, arguments performing side-effects, and
never inserted in the resulting code, must remain.
If foo is defined

(LAMBDA (X Y)
(COND ((ZEROP X) NIL)
(T YO))

the expression
(FOO 0 (SETQ 2z I))
if beta-expanded, must result in

(PROGN (SETQ Z I) NIL)

c. Solution

REDFUN-2 was updated to handle this case.

7.4.3.3 Interrelation between reduction and analysis of code.

As long as we are not processing code containing loops, the
reduction and the analysis of assignments can proceed in
parallel. When loops are included the analysis and the reduction
must be performed in separate steps.

a. Problem

A case which appeared in this application was the following
(simplified)

(PROG ((BY:TEST 'GREATERP) ...)
LOP
... (SELECTQ BY:TEST
(GREATERP (GREATERP RANGE:LEFT TO:LEFT))
(COND
(...
(T ... )))

(AND (NUMBERP BY:TEST) (SETQ BY:TEST 1))
(GO LOP)

© )
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Before the loop the variable by:test is bound to GREATERP. The
analysis of assignments will find that by:test can be assigned
to 1 and therefore REDFUN-2 will assume that the two possible
values for by:test in the loop are GREATERP and 1. The assign-
ment of by:test to 1 can never be performed if the initial
value of by:test is GREATERP! Therefore we could exclude this

as a possible value.

b. Analysis of the problem

This problem has earlier been discussed in section 6.9.1.3.
This case, however, cannot be solved by performing another

step of analysis of assignments and reduction. This depends on
the fact that the variable byitest also occurs in the condition
which controls the assignment of that variable. The and-ex-
pression will therefore never be eliminated. We need a reason-
ing based on the induction principle to be able to conclude

that the variable by:test never can be assigned to a number.

c. Temporary solution

The assignment of the variable by:test is performed in a sub-
function to the executor which will be beta-expanded. This
assignment appears only in a very special use of the iterative
statement. In this test example we excluded that variable from
the list of variables which may be assigned in that sub-

function.

7.4.3.4 Set-expressions

a. Problem

A set-expression was encountered during the analysis of assign-

ments. This set-expression assigns the external loop-variable.

b. Analysis of the problem

We must know what values the first argument to set can take,
i.e. which variables may be assinged by that expression. If
the first argument varies in the loop this can be a problem.
As' shown earlier it is difficult to extract information about

a variable in a loop, and here we must extract such information
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on two levels.

c. Temporary solution

We assumed that the first argument in the set-expression would
not change value in the loop. When that expression is en-
countered during the analysis we can simply look up in the a-
list and see if it has a known value. In our application,

this variable was always bound to the external loop-variable

so there were no other problems.

7.4.4 Other amendments. In order to make the examples go

through successfully it was necessary to give some additional

information and transformations to REDFUN-2.
a. A collapser
(OR X NIL) - X

which of course should be included as a standard

collapser.

b. The information that the functions greaterp, lessp,

zerop and nlistp only can return T oc NIL values (de-
clared on the property list of these functions).

A remark here. A problem in a system like REDFUN-2 is that

it is difficult to know what information is really needed in
the system. One question was whether it was necessary to know
that these "predicate" functions, including eq and many others,
could only return T or NIL as values. One would expect that
these functions would only be in a predicate context and that
we are therefore only interested in whether the value is true
or false. We decided not to include this information in the
system. In the first real experiment there was in fact a need

for it. The code arising after simplification was:

(SELECTQ (GREATERP RANGE:LEFT 10)
(T (GO $$0UT))
(SKIP (GO $$ITERATE))
NIL)
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which obviously should be reduced to

(SELECTQ (GREATERP RANGE:LETF 10)
(T (GO $3$0UT))
NIL)

c. Postprog-transformations performed.

cl. To find those variables in a prog, which will never
be accessed, and remove them from the prog-variable
list.

c2. Remove the assignments to those variables found in
step Cl.

c3. Remove initializations of variables in the prog-
variable list if the variable will also be assigned

before the first label in the Rrog-expression*
Example

(PROG ((I 1) X)
(SETQ I 2)
LOP

is transformed to
(PROG (I X)
(SETQ I 2)
LOP

c4. Remove labels not used in the prog-expression.

* This transformation will only be performed if the variable is
not used before the assignment and is not applicable on the

example

(PROG ((I (FOO J}))
(PRINT I)
(SETQ I 1)
LOP

*)
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8. CONCLUSIONS

This chapter will evaluate the REDFUN-2 program and summarize
some conclusions and experiences gained from this work and
propose some directions for further development of the
REDFUN-project.

8.1 SUMMARY OF THIS THESIS

This thesis has described the progress of the REDFUN-project.

An analysis of a former version and gained experiences from
experiments with that version led us to propose a new version,
the REDFUN-2 program. The background for this work, the new
design, the implementation and experiments have been reported
in the chapters 3 to 7. We will in this section evaluate the
REDFUN-2 program and summarize some conclusions and experiences

made so far found during the work with the system.

8.1.1 The REDFUN-2 program. REDFUN-2 is a quite large program.
It consists of about 400 LISP functions and takes about 7000

lines (120 printout pages) to print in a prettyprinted format.
It occupies 60000 words (120 memory pages) in the INTERLISP/20
system on a DEC-20. For a comparison, the first version of
REDFUN (program B in fig 1) consisted of about 1000 lines
prettyprinted code and REDFUN' (version E} of about 1500 lines.
This new version is consequently about 5-7 times larger than
its forerunners. If the next version grows in the same speed

as this version it will be a fairly large program. The LISP
coded part of INTERLISP/360-370 is prettyprinted on about

300 pages and the INTERLISP/20 system must be 2-3 times larger.
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8.1.2 The feasability of the proposed design. The design
which was the basis for the REDFUN-2 implementation was

described in section 5.2. The design has in most cases been
sufficient in order to implement the new features and exten-
sions described in section 5.1, The g-tuple has contained
enough information with information from the code needed to
perform appropriate reductions and by the semantic proce-
dures it has been easy to include relevant properties about
LISP-functions needed during the reduction. The design, how-
ever, is not sufficient to handle all cases which can appear
in prog-expressions (when arbitrary goto's are performed).
This does not cause REDFUN-2 to perform erroneous trans-
formations, but the analysis will in some cases not be as
good as we would like, and it will cause that some reductions
are never performed. Some problems have already been reported
in section 7.4.3. These problems, however, were of such nature
that they were caused by the absence of features which the
system was not intended to manage. Next section will show

some other cases where the design was not appropriate.

8.1.3 Some weaknesses in the proposed design.

8.1.3.1 Handling of go-statements. It is necessary to keep

track of go-expressions in the same manner as assignments. A
new element in the g-tuple is desirable in order to handle the
go-information in an expression. It is necessary to know
whether from an expression we can continue to the next one

or whether we always leave the expression by a branch (unless
we are not branching to a label following the expression).

Consider the example

(PROGN
(COND ( (NULL X) (GO A))
((EQ X 'A) (GO B))
(T (GO C)))
(FOO X))

We can not continue from the cond-expression to the following

foo-expression and that expression can therefore be eliminated
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from the code. It is also important during the loop analysis
to consider such cases. The same problem occurs also when
return-expressions are involved. A solution is to mark in the
g-tuple to which labels we may branch and if we can pass
through the expression without performing a go. The only re-
duction of dead code in a prog-expression is performed
between a top level (unconditional) go-statement and the
following label, such as in the example

(PROG (X)

(GO A)
(FOO X)

))
and also after a top level return-statement.
The go-statement can also effect the handling of assignments.

In the example
(COND ((NULL X) (GO Aa))

((EQ X 'A) (SETQ X 1))
(T (SETQ X 2)))

an assignment of the variable x has always been performed
when the following expression is encountered. In our system
this case will be treated as if an assignment of x may have

been performed.

8.1.3.2 Handling of side-effects. In the g-tuple we only flag

(with a true of false value) whether a side-effect may occur

in an expression or not. We must, however, distinguish between
different kinds of side-effects, especially whether an assign-
ment in a prog-expression is performed to a local variable
or a global one. Inside the prog-expression the assignment
must be treated as a side-effect but outside it should not be

treated as such. When the prog-reducer in our system checks
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for side-effects it cannot find out from the g-tuples of the
reduced statements, if there are only side-effects on local
variables or not. In the first case the whole prog-expression
should not be marked to perform a side-effect and in the second

case it should be marked.

8.1.3.3 Problems in collapsers and postprog-transformations.

When a form has been processed and its g-tuple is created, all
information is forgotten about the arguments in the form. Some-
times when we perform posttransformations on an expression we
would like to extract that information again. Consider the

example

(PROG (X Y 2)
(SETQ X 10)
(SETQ Z (PUT A B 'C))
(FOO X (SETQ Y 5))
(RETURN (FIE X Y 2)))

We assume foo and fie not to perform any side-effects. When
this expression has been reduced we can apply the postprog-
transformation which remove variables (and assignments of such
variables) which are never accessed in the code. When such
assignments are removed the second argument in the setg-
expression must remain in the code if the assignment is
performed in a value-context or if the second argument per-
forms side-effects. This information, however, must be re-
computed and cannot in our system be extracted from the
g-tuple. Another solution is to let the second argument re-

main in the code and perform another reduction step.

A more general solution is to let all information about a form
remain. Such information can be associated to the code through
hash-arrays. The risk with this scheme is naturally that we
will get an explosion of information saved about a program

and we may probables run into space problems.
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8.1.4 Complexity. Is REDFUN-2 complex? The answer is yes. A

goal when implementing the system was to structure the pro-
gram in a good way. In many cases we have succeeded; reducers

and semantic procedures are examples of that.

There 1is, however, another complexity involved in the program.
A large number of transformations, analysis, property extrac-
tions from the code etc go on in large portions of the pro-
gram. A reducer is responsible for the reduction of an ex-
pression and to collect and process all nessecary information
from its arguments g-tuple in order to create the new g-tuple.
Further, at every place where reduction of code is performed
this transfer and processing of information from g-tuples
must be performed. A user which writes a reducer for a func-
tion must also know about all this processing and include it

there.

Some complexity can be removed if reductions, evaluation

order of arguments in special functions, handling of assign-
ment information etc could be described in a more high-level
notation. Reductions and simplifications can for example be

described by production rules.

8.1.5 Generality. Is REDFUN-2 general? The answer is yes,

relatively general, if one means that REDFUN-2 can operate

on arbitraty written code and not be limited to a subset of
LISP or to a very "pure" version of it. Naturally there are
limitations in the code we can process, especially in a
language as LISP in which in principle everything is allowed.
The experiment with the iterative statement is a good example
of its generality, where the code was written by an expert
LISP programmer and was written without any knowledge about
our partial evaluation ideas and the REDFUN-programs.

The answer is no, if one means that we should be able to per-
form all kinds of transformations by the system. The purpose
with this system is to manipulate programs where the main

operation is based on partial evaluation, and we have included
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some other operations which seem to be useful in connection
with that method.

8.1.6 Reliability. Is REDFUN-2 reliable? The answer is no.

There is a real problem to manipulate LISP code where the user

is allowed to do more or less what he wants. The statement
(EVAL (READ))

spoils all analysis and knowledge we have about the program,

if there is no information about what statements can be read

in and evaluated by that expression. As described in section
6.7.4 the function set can spoil all information we have

about variables in program if we do not know which variables
may be assigned by that set-expression. The functions rplaca
and rplacd are also difficult to handle, and were briefly
discussed in 6.8.3. The reliability requirement is however

not as strong when the system is used interactively, and the
user can watch what is going on in the system, and the system
can ask for additional information from the user during
processing. The reliability requirement is much more im-
portant if the system acts without any supervision. This is

the case if the system is incorpated in a LISP compiler to take
care of the macro-expansion which was discussed in chapter 7.
One solution could be if we had a program which could analyse
other LISP-programs and classify its code, whether it is purely
written or written with "uncontrolakle" side-effects. De-
pending on such analysis the program can then decide to which

degree the manipulation can be allowed to be performed.

8.1.7 Efficiency. Is REDFUN-2 efficient? Answer: not too bad.

In the implementation we have not spent too much effort to per-
form a very efficient implementation. One goal, however, was
that when we chose between features to include in this new
version we only included such that could be implemented in

such a way that it could be used reasonably efficient.
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We wanted to be able to run gquite large examples through the
sytem and not only "toy-problems". To reduce an iterative
statement, where the code to reduce consisted of about

100 lines prettyprinted code (see appendix IV) takes about 2¢
seconds. Time in INTERLISP/20. As comparision, to compile these

executor functions takes about 8 seconds.
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8.2 DIRECTIONS FOR FURTHER WORK

8.2.1 The REDFUN-2 program.
- Find further test examples and applications. To use the

REDFUN-2 program as a macro expander seems promising and
further experiments ought to be performed in that appli-
cation. Another application 1s to "compile" an inter-
pretation over a constapnt datastzucture. Such an example

is found in a system which interprets conversation graphs
(HAG76). A conversation between a user and a program is re-
presented as a graph. An interpreter for the graph is then
available in order to perform the conversation. The ad-
vantage of this representation is that it is simple to ex-
periment with the conversation and changes in the con-
versation causes simple updates in the graph. In a pro-
duction system it can seem inefficient to interpret the con-
versation and it would be desirable to "compile" the graph
into a program. This "compilation" can under certain assump-

tions be performed through partial evaluation.

- Extend REDFUN-2's ability to handle more complex knowledge

about the program. Such a knowledge can be

"X is greater than 10"
"2 is a list of 3 elements"”
"the third element in the list 2 is the atom A"

or more complex expressions and include a theorem prover to

prove assertions from them.

- Include new features in the system. New features will nor-
mally arise when new experiments are performed. Examples
which can be desirable are to take care of common sub-
expressions, extend the analysis and processing of prog-

expressions and optimize code through rearranging of code.
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- Combine the system with other program analysis and mani-
pulation programs. A number of analysis routines in REDFUN-2
for example finding free variables, can bé better performed
by specialized analysis programs, such as FUNSTRUC (NOR72)
and MASINTERSCOPE (TEI74) in the INTERLISP system. Con-
ventions how different programs communicate with each other

and other similar problems must be solved.

- If REDFUN-2 is combined with other systems it would also be
desirabel to design a database structure to store information
about the program being processed. Such a database should
also contain information about different versions of the
program being processed and know which transformations have

been performed to it.

8.2.2 The REDCOMPILE program.

- The REDCOMPILE program was described in 4.1.5 and used in an
example in appendix III. In many applications the use of
REDFUN-2 can seem to0 inefficient. In some cases it can be
solved if the program being partial evaluated was redcompiled.
If the executor procedures in the implementation of the iter-
ative statement could be redcompiled we would have been able
to generate a computed macro which can be used when such a
statement is compiled. This program can also be compared
with the routine in CLISP which translates an iterative
statement to LISP code. The REDCOMPILE-program needs to go
through another iteration step and to be able to process the

same complexity of code that REDFUN-2 can do.
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If such a new version of REDCOMPILE could be made it would
probably be more practically useful than the corresponding

REDFUN-program.

- In the REDFUN-report we discussed that REDCOMPILE applied
to a program P in principle performs the same operation as
if REDFUN was applied to itself with the program P as the
constant information (given as the second argument to
REDFUN, i.e. the a-list in the present system). In order
to achieve this, REDFUN must be sufficiently powerful to
accept itself as argument and at the same time be written
in such a way that it is an acceptable argument to itself.
Try to achieve this goal. To perform this is probably more

interesting in principle than practically useful.

8.2.3 Theoreticial work

- Our approach in program manipulation has been to develop
useful programs and use them in some applications and from
that develop methods and gain more knowledge of problems
which occur. The complementary approach, to develop a theory
of program manipulation, and from that develop the nractical
methods, is of course also very important. We have earlier
(in section 2.6) mentioned some important projects in this
field. It is important when times arrives to derive results
from such work and put it in practical use by intergrating
them in our systems. Such an important result is to have an
analysis program which determines where in the code opti-
mizations are necessary. A problem today is that we spent
much time in parts of the code which are executed non-
frequently and where optimizations are of no use. If it
significant to those parts -tight loops, frequent function
calls, etc - where all resources in optimization should be
spent. Interesting results in this direction have been re-
ported by Wegbreit (WEG75b).
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APPENDIX 1
GENERATING STOREDEF~PROCEDURES IN THE PCDB APPLICATION

Here follows a more detailed description, illustrating how
the reduction is performed in the PCDB-examples in section
4.1.2.1, where functions were beta-expanded through several

levels.

The lambda-expression in the funarg-expressions, from which
the reduction proceeds, is the same for the three exampli-
fied relations. The values bound to the funarg-variables will
differ.

<LAMBNDA (A B)
(COND
<{ONFNNF ONF)
(PRNG (RONT)
{RETURN (COND
((TESTER F A B LDC
(CAR TYP)
(CADF TYP))
FONT)
({STOPEP (oFV R)
B A (QUOTE ONE)
Lnc
(CADP TYP))
(PPLACA PADT B>
(T (APPLY® (FILLAND QONF)
(QUNTE (STORER 2 A B {CADR NNE)
Loc
(CAF TypP)))
{QUNTE (STOREF (RFV F)

B A (CAR CNEF)

Lnc

(CADR TYP>

The definitions of the functions involved in the reduction
steps are shown here again (they were also shown in section
4.1.2.1)
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The functions tester, storer, getter and comparer are de-
clared open and will be beta-expanded and the functions
oneone, filland and fillfunc are pure. Their definitions are

STCRER
CLAMBDA (R A B N L TI)
tappLY* (FILLFUNC N)
(GETTER R A L TI)
B>

TESTER
<UAMBDA (R A B LDC TA TRI)
(AND {CA®R (SETQ POOT (GFTYER P A LOC TA)))
(PRNG2 (SETQ RONTY
{APPLY* (COMPARER (QUOTE ONF)
TR}
(cap rONT)
ANl
™

GFTTEF
<LAMBDA (P A L TI)
(OLDCOND
({AND (MEMB (QUNTE AA)
T1)
(AL A))
(SELECTO L
(APGS (GETENQT & ©))
(PRED (FGETROOT (GETRACT
P
(QUNTE TRUEFQR))
a))
({HF CYCYCHF)
{(GETPOOT A 9))
NIL))
(LAND (MEMB (QUOTE HX)
TI)
(HX A}
(SFLECTQ t
(AEGS (GFTROOT (CAF A)
P))
{PREN (CGETRONT (GETRONT
=]
(QUPTF TRUEFNR))
(CAE A)))
{ (HF CYCYCHF)
(GFTRONT (CAP A)
P
NTLY )
{{MFMR (QUPTE SX)
D
(RGFTEANT (GETRONT & (AUNTE TRUEFNE))
A>
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COMPARER
CLAMBDA (N TI)
(COND
({MEMB (QUDTE SX)
1)
(SELECTQ N
(MANY (FUNCTION MEMBER))
(NNE (FUNCTION EQUAL))
NIL))
{T (SELFCTQ N
(PNE (FUNCTION €Q))
{MANY (FUNCTION MEMA})
NIL>

ONEONE
<LAMRDA (ONE)
({EQUAL NNE (QUOTE (CNE DONED>

FILLAND
<LAMBDA (ONF)
(COND
((EQUAL ONE (QUCTE (ONE MARY)))
(FUNCTION TFVAND))
(T [FUNCTION AND>

FILLFUNC
<LAMBDA (NC)
(SELECTQ NC
(OMF {FUNCTION FILLPOQT))
(MANY (FUNCTION ADDRQOOT))
NIL>
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The CHILD relation.

Values of the free variables

R CHILD
ONE - (ONE MANY)

LOC - ARGS
TYP ((AA) (ARn))

Reduction steps:

a. Evaluation of oneone to NIL and filland to (FUNCTION

REVAND) and an invokation of the collapser rule

(APPLY* (FUNCTION f£fn)
(QUOTE argl) (QUOTE arg2) ... (QUOTE argn)) -

- (fn argl arg2 ... argn)
which holds if fn is of noeval-type, will result in

<LAMBNA (A B)

(REVAND (STOPER (QUATF CHILD)
A B (QUDTE MaNY)
(QUDTE ARGS)
(QUATE (AA)))

(STOREFT (QUNTE PEVCHILD)

B A (QUDTE ONF)
(QUDCTE ARGS)
(QUOTE (AA>

b. Beta-expansion of storer

<LAMBDA (A 8}
(REVAND (ADDROOT (GETTER (QUOTE CHILD)
A
{QUOTE APGS)
(QUNTE (AA)})
8)
(FILLRONT (GFTTER (NUOTFE REVCHILD)
B
(QUNTE ARGS)
(QUOTE (AA)))
a>
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The functions addroot and fillroot are results from eva-
luation of fillfunc with argument MANY resp. ONE. A

collapser rule

(APPLY* (FUNCTION fn) argl arg2 ... argn) -
-» (fn argl arg2 ... argn)

which holds if fn is of eval-type has also been invoked.

c. Beta-expansion of getter gives
<LAMBNDA (A B)
(KEVAND (ADDRDNT (GETPNAT A (QUCTF CHILD))

B)
{FILLFANT (GFTRNNT B (QUNTE 2EVCHILD))

A>

d. A collapser rule
(REVAND argl arg2) - (AND arg2 argl)
gives the final code
<LAMARNA (A B)
(AMD (FILLRNOT (GETFANT B (QUNTE FEVCHILN))
A)

(ANNDPOCT (SETECNT A (QUNTE CHILD))
8>

The MARRIED relation

Values of free variables

R - MARRIED
ONE - (ONE ONE)
LOC - ARGS

TYP - ((AR) (ARD))
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Reduction steps:

a. Evaluation of oneone to true gives

<LAMBDA (A B)
(PROG (RNOQT)
(RETURN (COND
([{TESTEF (QUOTE MARRIED)
A B (QUDTE ARGS)
(QUNTE (AA))
(QUOTE (AA)))
RONT)
{{STOREP (QUNTE REVMARRIED)
B A (QUOTE ONE)
(QUNTE APRPGS)
(QUNTE (AA)))
(PPLACA RNNT B>

b. Beta-expansion of tester and storer and the use of the

collapser rule given in step b for the CHILD relation
gives

<LAMBDA (A R)
(PRNG (FNQ™)
(FETUPN
(COND
(LAND <CAP (SETQ cNNT
(GFTTFF (QUNTF MARSIEN)
A

(QUNTE AFGS)
(QUOTE (AA>
(penG2 (SFTQ PONT
{FQ (CAR RONT)
A))
™
anNNT)
((FILLO0ONT (GETTFT (QUAOTF FEVMAPRIFD)
A
{QUNTE APGS)
(QUNTE [AA)))
A)
(RPLACA PNAT B>
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c. Beta-expansion of getter results in the final code

<LAMBNA (A B)
(PROG (RONDT)
(RETURN
(COND
({{AND <CAR (SETQ PMNT
(GETR00T A (QUOTE MARRIEDND>
{PRNG2 (SETQ ROOT
(EQ (CAR ROQONT)
B))
T}
enOT)
((FILLRONT (GETRNNT B (QUCTE REVMARRIFD)
)
A)
(FPLACA 2NNT R>

The AGE relation

Values of the free variables:

R - AGE
ONE - (ONE MANY)
LOC - ARGS
TYP - ((AA) (AA))

Reduction steps:

Follows exactly the same steps as the CHILD relation and we

obtain

a. CLAMBDA (A B)
(FEVAND (STI=ES ()VUNTE AGF)

AR [NNTE PAMY)
(AVOITF ATCS)
(NUYTE (AAYD)

(&TICFZ (QUNTE RFVAGT)
nA {QUPTE (NP
(YINTFE AERGS)
(AuUOTE (x>
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b. <LAMBDA (A B)
(REVAND (ADDPOQOY (GETTFF (QUOTE AGF)

A
(QUATE AFGS)
(QUATE (AA)))
R)
[FILLRONT (GETYEF (QUOTE REVAGF)
3}
(QUOTE APRGS)
(QUNTE (SX)))
A>

C. <LAMADA (A 8}
(REVAND (ADNDENDT (GFTROOT A (QUOTF AGF))

B)
(FILLRONT (FGETRMAT (GETCNNT
(QUDTF REVAGE)
(QUOTE TRULFNR))
B)
A>

d. <LAMBDA (A B)
(AND (FILLFOOT (BGETCANT (GFTRADT (QUNTF REVAGF)
{QUNTE TRUFFNF ))
R)
A)
(ADDEPONT {GFTRANT A (NUNTE AGF))
A>
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APPENDIX II

CHANGES OF CONTEXTS - AN EXAMPLE

Here is shown an example how the context is changed in an
expression. The interpretation of contexts and the context

table' are found in section 6.12.

The trace shows a sub-expression and the context it will be

reduced in.
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NOROROR I IOK KKK KK K K K K K I 3K 3K Ok 50k K 30K K K JOKOKOK X

FORM=
CAND (COND ((AND (EQ X (QUOTE a))
L
(SETQ Y W))
(FOO X))
((OR (EQ@ X (QUOTE HE))
Z)))
(OR (SETQ Z X)
(FROGN (SETQ Y V)
(FIE Y1
AL=
CONTEXT=V

FORM= (ANDI' (COND ((AND (EQ X (QUOTE A)) L (SETQ Y W))
(FOO X)) ((DR (EQ X (QUOTE ER))> Z))) (OR (SETQ Z X) (FROGN
(SETQ Y V) (FIE Y))))

CONTEXT= V

FORM= (COND ((AND (EQ X (QUOTE A)) L (SETQ Y W)) (FOO
X)) ((OR (EQ X (QUOTE R)) Z)))
CONTEXT= BT

FORM= (AND (EQ X (QUOTE A)) L (SETQ Y W))
CONTEXT= BTF

FORM:= (EQ X (QUOTE A))
(CONTEXT= BTF

FORM= X
CONTEXT= V
FORM= (QUOTE A)
CONTEXT= V
FORM:= L

CONTEXT= ETF

FORM= (SETQ Y W)

CONTEXT= ET
FORM= W
CONTEXT= VT

FORM= (FOOD X)
CONTEXT= ET
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FORM= X
CONTEXT= BT

FORM= (DR (EQ X (QUOTE B)) Z)
CONTEXT= BT

FORM= (EQ X (QUOTE H))
CCONTEXT= BTF

FORM= X
CONTEXT= V
FORM= (QUOTE H)
CONTEXT= V
FORM= Z

CONTEXT= ET

FORM= (OR (SETQ Z X) (PROGN (SETQ Y V) (FIE Y)))
CONTEXT= V

FORM= (SETQ Z X)
CONTEXT= VF

FORM= X
CONTEXT= VF

FORM= (FROGN (SETQ Y V) (FIE Y))

CONTEXT= V
FORM= (SETQ Y V)
CONTEXT= N
FORM= V

CONTEXT= V
FORM= (FIE Y)
CONTEXT= V
FORM= Y

CONTEXT= V

REQUCED FORM=
LAND! (COND ((AND (EQ X (QUOTE A))
L
(SETQ Y W))
(FOD (QUOTE A)))
((OR (EQ X (QUOTE E))
Z)))
(OR (SETQ Z X)
(FROGN (SETQ Y V)
(FIE Y1

SIDE-EFFECT=YES

ASSIGN-INFO=
(Z (ADDVALUE . NOEIN)
(Y !ADOVALUE . NOEIN)

NKKK KR HOK KKK KKK K 3K KKK KKK K K 3K 3 K K 3K K 3K oK
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APPENDIX I11

MAP-FUNCTIONS - EXAMPLES

We will here show some examples how map-functions can be
treated, in order to facilitate the maintanace of the various
versions, a map-function can appear in. The principle idea

was to start with a simple definition, easy to write and under-
stand, and then by automatic transformations generate all other
versions. The macro-expansion can then be performed through

partial evaluation.

We take mapcar as example. A simple definition is naturally

the recursive one

(MAFCAR
CLAMEDA (L FN1 FN2)
(CONL
C(NLISTF L)
NIL)
(T (CONS (AFFLYX FN1 (CAR L)) (1)
(MAFCAR (COND '
(FN2 (AFFLYX FN2 L))
(T (COR L)))
FN1 FN21)

This definition is straightforward and should be the only

version to maintain.

* More unique hames of the lambda-variables would be desirable

but these ones are used for readability.
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As system function an iterative version would probably be
more efficient and a recursion remover can generate such
version. We use the REMREC-program (RIS73) and recieve

CLAMEBDA (L FN1 FN2)
(FROG (AQO009 A0008)
(SETQ AO008 (SETR A0009 (CONS NIL NIL)))
MAFCAR
(COND
C((NLISTF L)
(RFLACD A0009 NIL) (2)
(RETURN (CLR A0008)))
(T (RFLACD A0009 (CONS (AFFLYX FN1 (CAR L))
NIL)Y)
(SETQR A0009 (CDR A000%))
LSETQ L (COND
(FN2 (AFFLYX FN2 L))
(T (CDR L2J
(GO MAFCARI)

This version can be compiled and also used as the base from

which we will perform partial evaluation.

Example I

Suppose that we at compile time encounter the expression
(MAPCAR NLIST (FUNCTION ADD1l))

We will then open mapcar and from version 2 generate a special-

ized version suitable to compile. By REDFUN-2 we will get

CLFROG ((L NLIST)
A0009 A0008)
(SETQ A0008 (SETQ A000? (CONS NIL NIL)))
MAFCAR
(CONLD
((NLISTF L)
(RPLACDO A0009 NIL) (3)
(RETURN (COR A0008)))
(T (RFLACD A0009 (CONS (AlD1 (CAR L))
NIL?)
(SETQ A0009 (CLIIR A0009))
(SETQ L (CDR L))
(GO MAFCAR1
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Here an open specialization has been performed with a prog-
expression (mapcar was defined to belong to function class

OPEN and open class PROG). A beta-expansion cannot be performed
here because the variable 1 will be assigned in the prog-

expression. Actually we got

(PROG ((L NLIST))
(RETURN (PROG (A0009 A 0008)
cee D))

which was collapsed into the inner prog with its variable-
list extended with the variables from the outer 2593‘.
Otherwise there was no real problems here. The apply*-
collapser is invoked and with fn2 known as NIL the inner

cond-expression will be reduced.

Example II
(MAPCAR BREAKFNS (FUNCTION BREAK) (FUNCTION CDDR))

gives

[CFROG ((L EREAKFNS)
AO00% AOOOB)
(SETQ A0008 (SETQ AQ009 (CONS NIL NIL))
MAFCAR
(COND
CCNLISTF L) (4)
(RFLACD A0009 NIL)
(RETURN (CDR A0008)))
(T (RFLACD A0009? (CONS (AFFLYX (QUOTE EBREAK)
(CAar L))
NIL))
(SETQ AQ000? (CDR A0009))
(SETQ L. (CINDR L))
(GO MAFCARI]

* This is not allowed if any prog-variable in the inner prog
is initialized by a form using a prog-variable from the

outer one. Example
(PROG ((L 10)) (RETURN (PROG ((X L)) ...)))
cannot be transformed to

(PROG ((L 10) (X L)) ...)
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Example III
(MAPCAR NLIST (F/L (X) (FOO X)) TAILFN)
gives

CFROG ((L NLIST)
(FN2 TAILFN)
A0009 A0008)
(SETQ A0008 (SETQR A0009? (CONS NIL NIL)))
MAFCAR
(CONL
C(NLISTF L)
(RFLACD AO009 NIL)

(RETURN (CDR A0008))) (5)
(T (RFLACD AO009 (CONS (LCLAMEDA (X)
(FOO X1
(CAR L))
NIL))

(SETR AOO009 (CDR A000%))
CSETQR L (COND
(FN2 (AFFLYX FN2 L))
(T (CDR L1
(GO MAFCARI]

Another kind of expansion of map-functions is when the first
argument is known or is known how to compute. Instead of per-
forming a loop over the elements in the list we want to produce
stright code, where succesive calls to the function are per-
formed for each element. This can be done if we perform the
partial evaluation and beta-expansion with the recursive de-
finition as base. *

The example
(MAPCAR (LIST I J K) (FUNCTION ADD1))

will be expanded to

(CONS (ADD1 I)
(CONS (ADDL 1)
(CONS (ADD1 K) (6)
NIL))>))

* Compare the discussion about unrolling of the segmap-function

in section 7.4.3.1.
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Another example
(MAPCAR (LIST I J K L M N) (FUNCTION ADDl) (FUNCTION CDDR))
is expanded to
(CONS (ADD1 ID
(CONS (ADID1 K)

(CONS (ALD1 M)
NIL))))

(7)

To perform this expansions we need following collapser rules:

(CDR (LIST x]1 x2 ... xn)) -+ (LIST x2 ... xn)
(CDR (LIST x)) - NIL

(CDDR (LIST x1 x2 ... xn)) - (LIST x3 ... xn)
(CDDR (LIST x1 x2)) - NIL

(CAR (LIST x1 x2 ... Xn)) - x1

(NLISTP (LIST x1 x2 ... xn))

{

NIL

A computed macro will generate the code to compile more
efficiently than we can perform through partial evaluation,

so the next step is to generate such version of mapcar. The
REDCOMPILE program could not completely perform this, but with
some guidance from us, it worked. REDCOMPILE can only operate
on programs, which are purely beta-expanded and not as in this

case open specialized.
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Version 2 of mapcar was run through REDCOMPILE and following
code was generated:

CLAMEDA
(L FN1 FN2)
(LISTFROG
(QUOTE FROG)
(LIST (QUOTE A0009)
(QUOTE A0O00B)
(LIST (QUOTE L)
L))
CLIST (QUOTE SETQ)
(QUOTE A0008)
(LIST (QUOTE SETQ)
(QUOTE A0009)
(LIST (QUOTE CONS)
(KWOTE NIL)
(KWOTE NILJ
(QUOTE MAFCAR)
(LISTCOND
(QUOTE CONID
CLIST/NIL (LIST (QUOTE NLISTF)
(QUOTE L))
(LIST (QUOTE RFLACIL)
(QUOTE A0Q009) (8)
(KWOTE NIL))
(LIST (RUOTE RETURN)
(LIST (QUOTE CIDR)
(QUOTE A00081]
(LIST/NIL
(KWOTE T)
(LIST (QUOTE RFLACD)
(QUOTE A0Q009)
(LIST (QUOTE CONS)

CCOLLAFS
(LIST (RUOTE AFFLYX)
FN1
(LIST (QUOTE CAR)

(QUOTE L1
(KWOTE NIL))
(LIST (QUOTE SETQ)
(QUOTE A000%)
(LIST (QUOTE CDR)
(QUOTE A0009)))
CLIST (QUOTE SETQ)
(QUOTE L)
(LISTCOND
(QUOTE CONIN
CLIST/NIL FN2
(COLLAFS (LIST (QUOTE AFFLYX)
FN2
(QUOTE L1
(LIST/NIL (KWOTE T)
(LIST (QUOTE CDR)
(QUOTE L1
(LIST (QUOTE GO)
(QUOTE MAFCARI]
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In the code the functions listprog, listcond and list/nil

work as list, but perform also simple reductions. For ex-

ample

listcond[COND, NIL, ((LISTP X) (FOO X)), (T (FIE X))] =
(COND ((LISTP X) (FOO X)) (T (FIE X)))

and

listcond[COND, NIL, (T (FOO X))] =
(FOO X)

To.take care of the apply*-expressions. REDCOMPILE was told to
insert calls to the collapser-part (the function collaps) in
REDFUN-2 and simplify such expressions at generation time.

By calling apply with the version (8) and the argument list of
a mapcar-form the prog-expression to compile is generated. This
version (8) will generate identical code for the examples I

and II, and in example III tailfn is directly substituted into
the code instead of fn2.

As comparision we finally give the LISP code for the definition
and the macro definition of mapcar. They should be compared
with versions (2) and (8). But notice that these both versions
had to be maintained in the INTERLISP system for mapcar, but

in our scheme only version (1l). The definitions are taken from
INTERLISP/10 (from 1972).
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The interpretative definition of mapcar:

(MAPCAR
CLAMEIM (MAFX MAPFN1 MAFFN2)
(PROG (MAFL MAFE)
LF  (COND
((NLISTF MAFX) (9)
(RETURN MAFL)))
(SETQ MAFE (CONS (AFFLYX MAPFN1 (CAR MAFX))
MAFE))
(COND
(MAFL (FRFLACD (CDR MAFE)
(FRFLACD MAFE)))
(T (SETQ MAFL MAPE)))
CSETQ MAFX (COND
(MAFFN2 (AFFLYX MAPFN2 MAFX))
(T (CDR MAFX]
(GO LF1)

This definition and the one automatic generated (2) differ
very little. Version (2) performs one extra cons compared
with this definition which performs one extra test inside

the loop.
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The macro definition:

Cx
(PROG (LL Q)
(RETURN
(SUBFAIR
(QUOTE (MAFX MAFCF MAFPCF2 H))
(LIST
(CAR X)
CCOND
[(SETQ Q@ (CFNF (CADIR X)))
(CONS Q@ (QUOTE ((CAR MACROX1]
(T CSETQ LL (CONS (LIST (QUOTE MACROF)

(CADR X1
(QUOTE (APFLYX MACROF (CAR MACROX1
CCOND
C(CDOR X)
(COND (10)

C(SETQ Q@ (CFNF (CADOR X)))
(CONS Q@ (QUOTE (MACROX1
(T (SETQ LL
(CONS (LIST (QUOTE MACROF2)
(CADDR X))
LL»)
(QUOTE (AFFLYX MACROF2 MACROX1]
(T (QUOTE (CDR MACROX1
LL)
(QUOTE
(FROG ( (MACROX MAFX)
MACROY MACROZ MACROW . E)
MAFCLF
(COND
((NLISTF MACROX)
(RETURN MACROY)))
(SETQ MACROW MAFCF)
CCOND
[CMACROZ
(SETQ MACROZ
(CDR

(FRFPLACD MACROZ
(FRFLACD
(CONS MACROW
MACROZ]
(T (SETQ MACROY (SETQ MACROZ
(CONS MACROW2
(SETQR MACROX MAFCF2)
(GO MAFCLF12
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This variable x is bound to the argumentlist in the mapcar-

form. The function cfnp is used to check if

(fn (CAR MACROX)) (a)

(APPLY* fn (CAR MACROX)) (b)

had to be built in order to perform the application of the

function of each element in the list to map over. This corre-

sponds to our apply*-collapser.

The same examples I to III are also shown here. Notice that

(4') is erroneous. The (a)-format above was choosed instead
of the (b)—format*.

(PROG ((MACROX NLIST)
MACROY MACROZ MACROW)
MAFCLF
(COND
((NLISTF MACROX) ,
(RETURN MACROY))) (3")
(SETQR MACROW (ADID1 (CAR MACROX)))
CCOND
[MACRDOZ (SETQ MACROZ
(CDR (FRFLACD MACROZ
(FRFLACI (CONS MACROW
MACROZ]
(T (SETQ MACRDY (SETR MACRDZ (CONS MACROW1]
(SETQR MACROX (COR MACROX))
(GO MAFCLF))

(FROG ((MACROX EBREAKFNS)
MACROY MACRDZ MACROW)
MAFCLF
(CONL
C((NLISTF MACROX) (4")
(RETURN MACROY)))
(SETQ MACROW (BREAK (CAR MACROX)))
CCOND
[MACROZ (SETQ MACROZ
(CDR (FRFLACD MACROZ
(FRFLACD (CONS MACROW
MACROZ]
(T (SETQR MACROY (SETQ MACROZ (CONS MACROW)
(SETQ MACR0OX (CODR MACROX))
(GO MAFCLF))

* In INTERLISP/20 (from 1977) it is corrected
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(PROG C[(MACROX NLIST)
MACROY MACROZ MACROW (MACROF2 TAILFN)
(MACROF (F/L (X)

(FOO X1
MAFCLF
(COND ((NLISTF MACROX)
(RETURN MACROY))) (5')

(SETQ MACROW (AFPLYX MACROF (CAR MACROX)))
CCONDI' CMACROZ
(SETQ@ MACROZ
(CDR (FRFLACL MACROZ
(FRFLACD
(CONS MACROW MACROZ1]
(T (SETQ MACROY (SETQ MACROZ (CONS MACROWI]

(SETQ MACROX (APFLYX MACROF2 MACROX))
(GO MAFCLF))
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APPENDIX IV

THE EXPERIMENT WITH THE ITERATIVE STATEMENT

We will in this appendix give the full LISP code for the exe-
cutor functions in the iterative statement implementation
(described in 7.4). We will also give some output from various

runs performed during the experiment.

We will first give a sampler of different iterative statements

which can be executed by these functions:

(FOR I FROM 1 TO 10 DO (PRINT I))
(FOR I FROM 1 TO N BY 2 SUM I)
(NEVER (ATOM X) FOR X IN LLIST)
(IN AL COLLECT CAR)
(FOR X IN L BIND Y FIRST (SETQ Y 0)
DO (COND ((ATOM X) (SETQ Y (ADDl Y))))
FINALLY (RETURN Y))
(FOR X IN L JOIN (CDR X) WHEN (AND (LISTP X)
(EQ (CAR X) 'A)))

These examples are run through REDFUN-2 and are discussed
in this appendix. For further description of the variants
of the iterative statement see its documentation in the
INTERLISP manual (TEI74).
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LISP-code for the executor functions in the iterative state-

ment.

ITERXCT

CLAMELDA
NIL
(FROG

(L)

(2)
(3)

(4)
(5)

(6)

(7)

(8)
(9)

(ITERTMP ITER:I!VALUE)
(ITERINIT)
$SLP
(SEGEVAL EACHTIME!LEFT EACHTIME:RIGHT)
(SELECTQ (ITERXT)
¢T (GO $$0UT))
(SKIF (GO $$ITERATE))
NIL)
(SETQ ITERTMP (SEGEVAL MAINILEFT MAINIRIGHT))
(SELECTQ
MAIN:OP
(D0 NIL)
(COLLECT (SETQ@ ITER:VALUE (CONS ITERTMF
ITER:VALUE)))
CJOIN (COND LC(NLISTF ITER!VALUE)
(SETQ ITER:IVALUE
(CONS ITERTMP (LAST ITERTMP1]
(T (RPLACD (CDR ITER:VALUE)
ITERTMF)
(RFLACD ITER:VALUE
(LAST (CDR ITER:VALUE]
(SUM (SETQ ITER!VALUE (PLUS ITERIVALUE ITERTMF)))
CITERCOUNT (AND ITERTMP (SETQ ITER:VALUE
(ADD1 ITERIVALUE]
CALWAYS (COND ((NULL ITERTMF)
(SETR ITER:!VALUE NIL)
(GO $$0UT2
[NEVER (COND (ITERTMF (SETQ ITERIVALUE NIL)
(GO $$0UT1
CTHEREIS (COND (ITERTMF (SETQ
ITER:VALUE
(CONI
((EQ RANGE:OF
(QUOTE IN))
(CAR RANGEILEFT))
(T RANGE:ILEFT)))
(GO $$0UT1]
(ITERROR ITERXCT))
$$ITERATE
(ANII RFTWHILE!LEFT (NEQ (EQ RFTWHILE:OF
(QUOTE RFTWHILE))
(AND (SEGEVAL RFTWHILE:LEFT
RFTWHILE:RIGHT)
)9
(GO $$0UT))
(ITERUFDATE)
(GO $$LF)
$$0UT
(SEGEVAL FINALLY:!LEFT FINALLY:RIGHT)
(RETURN (SELECTQ MAIN:!OF (JOIN (CAR ITER:VALUE))
(COLLECT (DREVERSE ITER:!VALUE))
ITERI!VALUE]
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ITERINIT
CLAMBDA NIL (SETQ RANGE!LEFT (SEGEVAL RANGE!LEFT
RANGE :RIGHT))
CAND FORILEFT (SET FOR:LEFT (COND
((EQ RANGE:OP (QUOTE IN))
(CAR RANGE:ILEFT))
(T RANGE:!LEFT]
(SETQ TOILEFT (SEGEVAL TOILEFT TO!RIGHT))
(SEGEVAL FIRST!LEFT FIRST:RIGHT)
(SELECTQ MAINIOP ((SUM ITERCOUNT)
(SETQ ITER:VALUE 0))
((ALWAYS NEVER)
(SETQ ITERIVALUE T)
NILJ

ITERXT
CLAMEDA NIL (OR [SELECTQR BYI!TEST ((NEVER LYNAMIC)
(% NEVER IS WHERE TO WAS NOT
GIVEN# DYNAMIC OCCURS ONLY
FIRST TIME THROUGH AND
THEREAFTER BY!TEST IS NUMERICj#
SEE ITERDEY AND ITERUFDATE)
NIL)
(NLISTF (NLISTF RANGEILEFT))
(GREATERF (GREATERF RANGE:LEFT
TOILEFT))
(LESSF (LESSF RANGE!LEFT TOILEFT))
(COND' ((NOT (NUMERERF BRYI!TEST))
(ITERROR ITERXT))
((ZEROF RYITEST)
(x THE DYNAMIC CASES. SEE
ITERUFDATE,)
™
((LESSF BY!TEST 0)
(LESSF RANGE:LEFT TO:LEFT))
(T (GREATERF RANGEILEFT
TOILEFT1
(ANDI WHILEILEFT
(NEQ (ER WHILE:!OF (QUOTE WHILE))
(AND (SEGEVAL WHILEILEFT
WHILEIRIGHT)
T»
(ANDI WHEN:ILEFT
(NEQ (EQ WHEN:OF (QUOTE WHEN))
(AND (SEGEVAL WHENILEFT
WHEN:!RIGHT)
T
(QUOTE SKIF2]
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ITERUFDATE
CLAMBDA
NIL
(SELECTQ RANGE!OF CIN (SET FOR!LEFT (CAR (SETQ RANGE:LEFT
(
ITERUFDATEL]
[ (ON GENERATOR)
(SET FOR!LEFT (SETQ RANGE:LEFT (ITERUFDATEL1l
CLFROM (FROG (TMP)
[SET FORILEFT (SETQ
RANGE!LEFT
(FLUS RANGE!LEFT (SETQ
T™F
(ITERUFDATEL]
(k BYITEST=NUMBER: THE *"DYNAMIC®
CASE (SEE ITERDEY))
(AND (OR (NUMBERF RY!TEST)
(EQ BY!TEST (QUOTE DYNAMIC))
)
(SETQ BY:!TEST TMF]
(ITERROR ITERUFDATE))
(AND RANGE:OLL' (SET RANGE:OLD RANGE:!LEFT]

ITERUFDATEL

CLAMBOA NIL (AND' (EQ RANGE:OF (QUOTE IN))
(SET FORILEFT RANGEILEFT))
(SEGEVAL BY!LEFT BYIRIGHT]

SEGEVAL

CLAMEDA OkkLk ¥KRX)
(SELECTQ XXRX ((CONSTANT NUMEER)
HokLx)
(FUNCTION (AFFLYX %XLX (EVAL FOR:LEFT)))
(SEGMAF XXLX ¥XR¥ (FUNCTION EvAL3J

SEGMAF
CLAMELIA (XXL XXR FN %*%&V)
(COND' ((EQ XXL XXR)

KkV)

((NLISTF XXL.)

(ITERROR SEGMAF))

(T (SEGMAF (CLR %XL)

XKR FN (AFFLYX FN (CAR X%XL1]

This function has been redefined, compare the discussion in
7.4.3.1.
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The following list contains those variabels which are free

in thise functions and which are bound to values from the

parsing step.

(FOR{LEFT FOR!RIGHT RANGE:OF RANGE:LEFT RANGE:RIGHT
RANGE$OLD BYSLEFT HY!RIGHT EY:!TEST TOILEFT TO!RIGHT
BIND!LEFT EIND!RIGHT MAIN:OF MAINILEFT MAINIRIGHT
WHILE:OF WHILE:LEFT WHILE!RIGHT RFTWHILE:OF
RFTWHILE!LEFT RFTWHILE!RIGHT WHEN:OF WHEN!LEFT
WHENSRIGHT FIRST:LEFT FIRST!RIGHT EACHTIME:LEFT
EACHTIMESRIGHT FINALLY!LEFT FINALLY!RIGHT ITER:!BINLINGS)

We will' here briefly describe how an iterative statement is

executed. The numbers are found in the function definition of

the

The

(1)

(2)

(3)

(4)

(5)

(6)

(7

(8)

(9)

iterxct-function.

main function is iterxct.

The call to iterinit initializes the loop variables and
the variable for the value returned from the statement,

and may perform other initializations as well.

An expression in the iterative statement can be evaluated
in every step in the loop before the exit-condition is
tested.

In the selectg-expression the function iterxt checks the
exit-condition and returns either T (finished), SKIP
(skip this iteration) or other values (go on).

This expression executes the loop-body.

In this selectg-expression various operations may be per-

formed depending on the format of the iterative statement.

A check can also be performed after the loop of the exit-

condition.

The function iterupdate performs necessary updates of

variables before the next iteration.

An expression can be evaluated before the exit from the

iterative statement.

A return is made with the appropriate value.
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These executor functions are all declared to be of the function
class OPEN and open class BETA, i.e. they will all be beta-
expanded.

Let us follow the example
(FOR I FROM 1 TO 10 DO (PRINT I)) (I.S 1)

In section 7.4.3.3 a problem was discussed where the analysis
of assignments in the loop was not good enough. We will first
show the example where we have excluded this variable by:test
which caused the trouble. Later on in this appendix we will

show why that problem occurred.

If the above example is given to the parser in the iterative
statement implementation the 32 free variables will be bound

and we can by them create the following prog-expression
CFROG C(FOR:LEFT (QUOTE I))
[FOR!RIGHT (QUOTE (FROM 1 TOD 10 DO (FRINT I1
(RANGE {OF (QUOTE FROM))
(RANGE:LEFT 1)
(RANGE:RIGHT (QUOTE NUMBER))
(RANGE :OLL NIL)
(BYILEFT 1)
(BY!{RIGHT (QUOUTE NUMEER)) (1)
(BY!TEST (QUOTE GREATERF))
(TOILEFT 10)
(TO!RIGHT (QUOTE NUMBER))
(RINDILEFT NIL)
(BIND!RIGHT NIL)
(MAIN:OF (QUOTE DO))
CMAINILEFT (QUOTE ((FRINT I3
(MAIN!RIGHT NIL)
(WHILE:OF NIL)
(WHILE:LEFT NIL)
(WHILE:RIGHT NIL>
(RFTWHILE:OF NIL)
(RFTWHILESLEFT NIL)
(RFTWHILE!RIGHT NIL)
(WHEN:OF NIL)
(WHEN:LEFT NIL)
(WHENIRIGHT NIL)
(FIRSTILEFT NIL)
(FIRST:RIGHT NIL)
(EACHTIME!LEFT NIL)
(EACHTIME!RIGHT NIL)
(FINALLYI!LEFT NIL)
(FINALLY!RIGHT NIL)
(ITER:BINDINGS (QUOTE (I
(RETURN (FROG (I)
(RETURN (ITERXCTIJ
This expression is given to redform.
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We follow the beta-expansion of some functions

(ITERINIT)

gives
(QUOTED (FROGN (SETQ RANGE:LEFT 1)
(SETQ I 1)
(SETQ TOLEFT 10))
NIL $SIDE NIL NIL ((TOJLEFT $VALUE . 10)
(I {VALUE . 1)
(RANGE!LEFT :VALUE . 1)))

(ITERXT)

gives

(QUOTED (GREATERF RANGE:LEFT 10)
({VALUES T NIL)
NIL NIL NIL)

(ITERUPDATEL) (called form iterupdate)

gives

(QUOTED 1 (IVALUE . 1))

(ITERUPDATE)
gives

(QUOTED (SETQ I (SETQ RANGE!LEFT (FLUS RANGE!LEFT 1)))
NIL $SIDE NIL NIL ((TMF :VALUE . 1)
(RANGE {LEFT :!DATATYFE . NUMRER)
(I (DATATYFE . NUMBER)))

(ITERXCT)
gives them finally

(FROG (ITERI!VALUE)
(SETQ RANGEILEFT 1)
(SETQR I 1)
(SETQ TO!LEFT 10)
$$LF(SELECTQ (GREATERF RANGE:!LEFT 10)
(T (GO $$0UT))
NIL)
(FRINT ID
(SETQ I (SETQ RANGEILEFT (FLUS RANGEILEFT 1)))
(GO $&LF)
¢$0UT
(RETURN ITER:VALUE))
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The original expression (1) which was given to redform has now
been reduced to

CFROG
C(FORILEFT (QUOTE I))
[FOR!{RIGHT (QUOTE (FROM 1 TO 10 DO (FRINT I1]
(RANGE :0OF (QUOTE FROM))
(RANGE!LEFT 1)
(RANGE:RIGHT (QUOTE NUMEBER))
(RANGE:OLD NIL)
(BYILEFT 1)
(BY!RIGHT (QUOTE NUMBER))
(BY!TEST (QUOTE GREATERF))
(TOILEFT 10)
(TO!RIGHT (QUOTE NUMEER))
(BINDILEFT NIL)
(BIND:!RIGHT NIL)
(MAIN:OF (QUOTE L[0))
CMAINILEFT (QUOTE ((FPRINT I1]
(MAINIRIGHT NIL)
(WHILE:OF NIL)
(WHILE!LEFT NIL)
(WHILE:RIGHT NIL)
(RFTWHILE:OF NIL)
(RFTWHILEILEFT NIL)
(RFTWHILE!RIGHT NIL)
(WHEN:OF NIL)
(WHEN:LEFT NIL)
(WHEN!RIGHT NIL)
(FIRSTILEFT NIL)
(FIRST!RIGHT NIL)
(EACHTIME:LEFT NIL)
(EACHTIME:!RIGHT NIL)
(FINALLY:LEFT NIL)
(FINALLY!RIGHT NIL)
(ITER!FINDINGS (QUOTE (I3
(RETURN
(FROG (I)
(RETURN (FROG (ITER:VALUE)
(SETQ@ RANGE!LEFT 1)
(SETR I 1)
(SETQ TOILEFT 10)
$$LF
(SELECTQR (GREATERF RANGE:ILEFT
10)
(T (GO $$0UT))
NIL)
(FRINT ID
(SETQ I (SETQ RANGEILEFT
(FLUS
RANGE!LEFT 1)))
(GO $$LF)
$$0UT
(RETURN ITER:VALUEI]
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These prog-expressions can now be collapsed into an expression

by using the rule

(PROG (al e an) (RETURN (PROG (bl . e bp) stml...stmk))) nd

(PROG (al ... a

n bl e bp) stml e stmk)

which can be applied as long as no variables in the inner
pProg are initialized by a form containing a variable bound

in the outer prog.

A postprog-transformation will remove those prog-variables
which will never be accessed and assignments to such variables.
From the outermost prog only rang:left will remain we will

receive

(FROG ((RANGE:LEFT 1)
I ITERIVALUE)
(SETQ RANGEILEFT 1)
(SETQ I 1)
$$LF(SELECTQ (GREATERF KANGE:!LEFT 10)
(T (GO $$0UT))

NIL) (3)
(FRINT I)
(SETQ I (SETQ RANGE:LEFT (FLUS RANGE!LEFT 1)))
(GO $$LF)
$$0UT

(RETURN ITER:VALUE))
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Next postprog-transformation to apply is to remove initial-
izations of variables which will be assigned again before the
first label. In this case it seems better to leave the
initialization of rang:left in the prog-variable list and to
remove the assignement instead. In many other cases in this
experiment a variable was initialized and then assigned to
another value and therefore we have found it more suitable

to remove the initializations.

(FROG (RANGE:LEFT I ITER:VALUE)
(SETQ RANGE:LEFT 1)
(SETR I 1)
$$.F (SELECT@ (GREATERF RANGE:!LEFT 10)
(T (GO $$0UT)) (4)
NIL)
(PRINT ID
(SETQ I (SETQ RANGE:LEFT (FLUS RANGE:LEFT 1)))
(GO $$LF)
$$0UT
(RETURN ITER:VALUE))

The system could not remove the iter:value variable because
of the same problem which occurred with the by:test variable
discussed later on in this appendix. Another run through
REDFUN-2 will however produce
(FROG (RANGE:!LEFT I)
(SETQR RANGE:ILEFT 1)
(SETQR I 1)

$$LF(SELECTR (GREATERF RANGE:LEFT 10)
(T (GO $$0UT))

NIL) (5)
(PRINT 1)
(SET@ I (SETQ RANGE:LEFT (FLUS RANGE:LEFT 1)))
(GO $$LF)

$$0UT
(RETURN NIL))
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Some figures. A specialization of an iterative statement by
REDFUN-2 takes about 20 seconds. REDFUN-2 has then been compiled
straightforward by tcompl in INTERLISP. Some more efficiency

can be obtained by block-compilation and compilation of all
procedures stored on property lists, such as reducers,

semantic procedures and collapsers. The executor functions

in the iterative statement. takes about 8 seconds to compile,

as comparision. Fiqures from the reduced code follows in

the table

compiled interpreted
code code
iterative statement 0.21 0.68
jiterative statement
specialized by REDFUN-2| 0.07 0.12
CLISP (as comparision) 0.07 0.40 (first
translation)
0.12

(figures in sec. and obtained
from runs on the DEC/20)
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If we are not eliminating the variable by:tesgt from the
variable analysis, the following happens. The loop-structure
in iterxct can be described by the directed graph

LP

OuT, - ITERATE

and we have a loop containing the blocks LP and ITERATE. The
analysis of variables will find the following variables which

may be assigned in that loop
iter:value, itertmp, i, range:left and by:test

but it will be unpossible to extract any information about
them.

This means that at the entry to the loop at label $$LP there
will be no knowledge about the variable by:test and the re-

duction will result in

(FROG (RANGE:I!LEFT (BYI!TEST (QUOTE GREATERF))
I ITER:!VALUE)
(SETQ@ RANGEILEFT 1)
(SETQ I 1)
$$LF(SELECTQ LCSELECTQR BY!TEST
((NEVER DYNAMIC)
NIL)
(NLISTF (NLISTF RANGEILEFT))
(GREATERF (GREATERF RANGE!LEFT 10))
(LESSF (LESSF RANGE!LEFT 10))
(COND
((NOT (NUMBERF BY:!TEST))
(ITERROR ITERXT))
((ZEROF RYI!TEST)
LR (6)
((LESSF EYITEST 0)
(LESSF RANGE:LEFT 10))
(T (GREATERF RANGE!LEFT 101
(T (GO $$0UT))
(SKIF (GO $$ITERATE))
NIL)
(FRINT 1)
$$ITERATE
(SETQ I (SETQ RANGEI!LEFT (FLUS RANGEI!LEFT 1)))
(AND' (OR (NUMEBERF RY!TEST)
(EQ BHYITEST (QUOTE DYNAMIC)))
(SETQ EBYITEST 1))
(GO $$LF)
$$0UT
(RETURN ITER:!VALUE))
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Another analysis and reduction can simplify the expression more.
The analysis about by:test will now report that it can have
either the value GREATERP (initialized in the prog-variable
list) or 1 (from an assignment in the loop).

(FROG (RANGE:LEFT (BY:TEST (QUOTE GREATERF))
I
(SETQ RANGE:ILEFT 1)
(SET@ I 1)
$$LF(SELECTQ (SELECTQ BY:TEST
(GREATERF (GREATERF RANGESLEFT 10))
(GREATERF RANGE:LEFT 10))
(T (GO $$0UT))
NIL) (7
(FRINT I)
(SETQ I (SETR RANGE!LEFT (FLUS RANGESLEFT 1)))
(AND' (NUMBERF EY3TEST)
(SETQ BY!TEST 1))
(GO $$LP)
$$0UT
(RETURN NIL))

No further reduction can be done by REDFUN-2 and we have
reached the situation which was discussed and analysed in

section 7.4.3.3.

Another possible simplification would follow from recognizing
the common subexpression in the selectg, i.e. the two in-
stances of (GREATERP RANGE:LEFT 10). However we have not
attempted to include in REDFUN-2 any ability to recognize

common subexpressions or to perform reductions based on them.
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Further examples:

(FOR I FROM 1 TO N BY 2 SU
M D (1.5 2)

will cause following code to be produced

(PROG (RANGE!LEFT TOMLEFT I ITERTMF ITER:VALUE)
(SETQ RANGE:!LEFT 1)
(SETQ I 1)
(SETQ TOILEFT N)
(SETQ ITER:VALUE 0)
$$LF
(SELECTQ (GREATERF RANGE:!LEFT TOILEFT)
(T (GO $$0UT))
NIL)
(SETQ ITERTMF I)
(SETQR ITER!VALUE (FLUS ITER!VALUE ITERTMF))
(SETQ@ I (SETA RANGE!LEFT (FLUS RANGEILEFT 2)))
(GO ssLFP)
$$0UT
(RETURN ITER:VALUE))

Remark. The itertmp-variable could be propageted, i.e.
replacing the occurrences of the variable to the
form which binds it, in this case the form i. The
variable can then be deleted from the prog-variable
list. This kind of propagation can be performed by
a postprog-transformation but has not been included
yet in our system.



231

(NEVER (ATOM X) (I.S 3)
FOR X IN LLIST)

(PROG (RANGE:LEFT X ITERTMF ITER:VALUE)
(SETQ RANGE:LEFT LLIST)
(SETQ X (CAR RANGE:!LEFT))
(SETQ ITERIVALUE T)
$SLF
(SELECTQ (NLISTP RANGE:LEFT)
(T (GO ss$0UT))
NIL)
(SETQ ITERTMF (ATOM X))
(COND (ITERTMFP (SETQR ITER:VALUE NIL)
(GO $$0UT)»))
[SETQ X (CAR (SETQ RANGE:LEFT
(FROGN (SETQ X RANGE:LEFT)
(CDR X1
(GO $sLP)
$$0UT
(RETURN ITER:VALUE))

Remark. This statement is true if LLIST does not contain
any atoms. A propagation of the variable x inside
the progn-expression would clean up among the
assignments of the loop variables x and range:left.
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(IN AL COLLECT CAR) (1.5 4)

(PROG (RANGE:!LEFT DUMMYIV ITERTMP ITER:!VALUE)
(SETQ RANGEILEFT AL)
(SETQ DUMMYIV (CAR RANGEILEFT))
‘$$LFP
(SELECTQ (NLISTF RANGE:ILEFT)
(T (GO $$0UT))
NIL)
(SETQ@ ITERTMF (CAR DUMMYIV))
(SETQ ITER!VALUE (CONS ITERTMP ITER:IVALUE))
[SETQ DUMMYIV (CAR (SETQ RANGE:ILEFT
(FROGN (SETQ DUMMYIV
RANGE !LEFT)
(CDR DUMMYIV]
(GO $sLP)
$$0UT
(RETURN (DREVERSE ITERIVALUE)))

Remark. Performs

(MAPCAR AL (FUNCTION CAR))

A dummy-variable dummyiv is introduced and defined to
the nalaysis program to be a variable which varies

in the loop.



233

(FOR X IN L BIND Y FIRST (SETQ Y 0) (I.S 5)
Do ‘
CCOND ((ATOM Y)

(SET@ Y (ADD1 Y3
FINALLY
(RETURN Y))

(PROG (RANGE:LEFT X Y)

(BETQ RANGEILEFT L)
(SETQ X (CAR RANGE:LEFT))
(SETQ Y 0)
$SLP
(SELECTQ (NLISTF RANGELEFT)

(T (GO $s0UT))

NIL)
CCOND (CATOM X)

(SETQ Y (ADD1 Y12
[SETQ X (CAR (SETQ RANGE:ILEFT
(FROGN (SETQ X RANGE:!LEFT)
(CDR X1

(GO $$LF)
$30UT
(RETURN Y))

Remark. The statement counts the number of atoms in a list.
This example is evaluated incorrectly by the iterative
statement routines. This depends probably of the
return-statement after FINALLY which causes a return
out of the wrong prog. Interesting, however, is that

this reduced version is correct!
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CFOR X IN L JOIN (CDR X) (1.5 6)
WHEN
(AND (LISTP X)
(E@ (CAR X)
(GQUOTE Al
(PROG

(RANGE !LEFT X ITERTMP ITER:VALUE)
(SETQ RANGE!LEFT L)
(SETQ@ X (CAR RANGEILEFT))
$SLFP
(SELECTQ
(OR (NLISTF RANGEILEFT)
(AND (NEQ T (AND (LISTF X)
(EQ (CAR X)
(QUOTE A))
™)
(QUOTE SKIP)))
(T (GO $s0UT))
(SKIF (GO $$ITERATE))
NIL)
(SETQ ITERTMF (CDR X))
CCOND L[ (NLISTF ITER:VALUE)
(SETQ ITER!VALUE (CONS ITERTMP (LAST ITERTMFI
(T (RPLACO (CDR ITER!VALUE)
ITERTMF)
(RFLACD ITER!VALUE (LAST (CDR ITERIVALUE]
$$ITERATE
[SETQ X (CAR (SETQ RANGE!LEFT (FROGN (SETQ X
RANGE{LEFT)
(CDR X1
(GO $$LF)
$$0UT
(RETURN (CAR ITER:VALUE)))

Remark. This statements concatenates those sublists in the

list L, in which the first element is the atom A.
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APPENDIX V

PROGRAM CODE FROM SOME CENTRAL FUNCTIONS IN REDFUN-2

The program code for the central functions in REDFUN-2,
redform, redargs and redfun and the function tryapply are
given here. The code is also given for the and-reducer and
its auxiliary functions and a table shows the various trans-
formations that reducer performs.
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(DEFINEQ

(REDIFORM
CLAMEBDA (FORM AL RCTXT)

(k X Extracts the reduced exrression
from the QUOTED-exrression)

(UNQUOTED' (REDFORMX FORM AL RCTXT3J)

(RELDFORMX
CLAMBEDA (FDRM AL RCTXT)

(X X FORM is reduced with a-list AL in
context RCTXT)

(FROG (TEMF)
(OR RCTXT (SETQ RCTXT (QUOTE V)))
(RETURN
(COND
((NULL FORM)>
NIL)
((LITATOM FORM)
(COND
((EQ FORM T
™
C(SETQ TEMF (SASSOCEIN FORM AL))
(FROG (TMF) (X FORM is a
variable with
VALUE-DIESCRIFTOR
(excl NOBFIN) on
a-list)
(RETURN
(CONID

((SUBSTVALUE TEMF)

(k A SUBSTITUTION
DESCRIFTOR)

(SUERSTVAR FORM TEMF AL

RCTXT))
((SETQ TMF
(KNOWNVALUE (CDR TEMF)))

(X Kriown value of
variable (a
tVALUE-descrirtor))

(QWOTE (CLR THF)))

(T (X Check for FALSE
and TRUE branch
contexts)

(MAKEQUOTED
FORM
(CDODR TEMF)
NIL NIL
(COND
((TRUECTXTF RCTXT)
(MAKEVARTRUEVAL
FORM)>))
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(COND
((FALSECTXTP RCTXT)
(MAKEVARF AL SEVAL
FORM1
C(TRUEORFALSECTXTF RCTXT)
(X Check for FALSE
and TRUE branch
contexts)
(MAKEQUOTED FORM NIL NIL NIL
(COND
((TRUECTXTF RCTXT)
(MAKEVARTRUEVAL FORM)))
(COND
((FALSECTXTF RCTXT)
(MAKEVARFALSEVAL FORM1]
(T FORM)))
((NLISTF FORM)
FORM)
((QUOTEF FORM) (X FORM is a
QUOTE-exFPression)
(AFFLYX (GETF (QUOTE QUOTE)
(QUOTE REDUCER))
FORM))

((QUOTEDF FORM) (K FORM is a
QUOTED-exrression.

Leave it)
(CONID
((ONLYNILS (CDDR FORM))
(UNQUOTED FORM))

(T FORM)))
((NL.ISTF (CAR FORM))
CCOND
((MEME (CAR FORM)
FORCEREDARGSLIST)
(X Reduce arduments
before
classification of
the FORM)
(SETQ FORM
(CONS
(CAR FORM)
(QUOTEDALL
(REDARGSCTX (COR FORM)
Al
(FNCTXT (CAR FORM)
RCTXT1

(X X Branch on function-class.
Collars the result)

(COLLAFS
(SELECTQ
(CLASSIFY FORM)
(FURE. (TRYAFFPLY (CAR FORM)
(REDIMARGSX (COR FORM)
AL
(QUOTE V)
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RCTXT))
(OPEN
(EXPAND (CAR FORM)
(QUOTEDALL
(REDARGSX (CDR FORM)
AL

(QUOTE V)))
AL RCTXT))
(REDUCER (COND
((SETQ TEMP
(GETP (CAR FORM)
(QUOTE REDUCER)))
(AFPLYX TEMP FORM AL RCTXT)
)
(T FORM)))
(EXFR (EXFRFN (CAR FORM)
(REDARGSX (CDR FORM)
AL RCTXT)))

(SIDEEXFR
(SIDEEXFRFN
(CAR FORM)
(REDARGSCTX (CDR FORM)
AL
(FNCTXT (CAR FORM)
RCTXT))
RCTXT))
(SIDEFEXFR (SILEFEXFRFN FORM))
FORM)
AL RCTXT))
(T (X CAR of FORM is
non-atom)
(SELECTQ

(CAR (SETQ TEMP (RELDFUNX (CAR FORM)
AL RCTXT)>))

CNLAMBLA (X A check for
assidnments oudht to
be done)

(CONS TEMF (CDR FORM1

(OFENLAMEDA

(EXFAND TEMF
(QUOTEDALL (REDARGSX
(COR FORM)
AL
(QUOTE V) ))
AL RCTXT))»
(TRYAFFLYLAMEDA TEMF (RELI/ARGSX
(COR FORM)
AL
(QUOTE V)
RCTXT1)

(REDARGS
CLAMBOA (ARGS AL RCTXT)

(X X Extracts the reduced exrression
from the QUOTED-exrression)
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(MAPUNQUOTED (REDARGSX ARGS AL RCTXTJ)

(REDARGSX
CLAMBDA (ARGS AL RCTXT) (X Ferforms REDFORMX
on each element on
ARGS)

(PROG (RES TEMP)
(COND
((NULL ARGS)
(RETURN NIL) )
LOF (SETQ TEMF (REDFORMX (CAR ARGS)
AL RCTXT))

(SETQ@ RES (CONS TEMF RES))

(SETQ ARGS (CDR ARGS))

CCOND

((NULL ARGS)
(RETURN (DREVERSE RES]

(AND (SETQED TEMF) (X Transfer
assidninfo from
rprevious FORM)

(SETQ AL (ALDDOSETQAL (GETSETQ TEMF)
AL)))
(GO LOFD1)

(REDFUN
CLAMBDA (EXFR AL RCTXT)

(k X% Extracts the reduced exrression
from the QUOTEL-exrression)

(UNQUOTEL (REDFUNX EXFR AL RCTXT1)

(REDFUNX
CLAMBLA (EXFR AL RCTXT)

(X % Reduces a3 function exPression)

(CONI!
((NLISTF EXFR)
EXFR)
(T
(SELECTQ
(CAR EXFR)
CCLAMEDA NLAMEDAZ
(SETQ AL (REMAL (CADIR EXFR)
AL))
(FROG (TEMF)
(SETQ TEMF (REDARGSX (COOR EXFR)
AL RCTXT))
(RETURN
(MARKSIDED (MARKSETQ
(LLINS (CAR EXFR)
(CADOR EXFR)
(MAFUNQUOTED TEMF))
(CHECKSETQARGS TEMF T))
(MAFSIDED TEMPI
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(FUNARG (REDFUNX (CALR EXFR)
(AODVALUE (MKALIST (CODR EXFR))

aL)
RETXT))
EXFRI1)
(TRYAFFLY
CLAMEDA (FN ARGS RCTXT)
(FROG (VAL CLASS RES)
CCOND
C(NOVALUECTXTF RCTXT) (X% NOVALUE-context)
(RETURN (EXTRACTSIDEDARGS ARGS NIL
(QUOTE N1
CCONLD

((NULL ARGS)
(RETURN (QWOTE (AFFLY FN1J

(X RES is used to bound the resulting
exrression, If a sindle value exists
ther an immediate return is made.
Otherwise 2 QUOTED-exrression is made or
NIL » if NIL other semantic rFrocedures
are arrlied)

(SELECTQ
(SETQ CLASS (CLASSIFYARGS ARGS))
CALLQWOTED (% All arduments

krnown and no
side-effects)
(RETURN (QWOTE (EVAL (CONS FN (MAFUNQUOTED
ARGS]
(ALLSINGLEVALUE (X All arduments
known but
side-effects are
involved)

(RETURN
(EXTRACTSIDEDARGS
ARGS
CQWOTE (EVAL (CONS FN (MAKEFUREARGS
ARGS1]
RCTXT)))
CALLKNOWNVALUES (% All arduments
have krnown values
(either !VALUE or
tVALUES)Y)
(COND
((QWOTED
(SETQ RES

(MAKEEXFRESSION
(CONS FN (MAFUNQUOTED ARGS))
LFROG (FROC)
(RETURN
(CONL
((SETQ FROC
(GETF FN
(QUOTE VALUEFN))
)
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(AFFLY FROC ARGS))
(T (EVALVALUES
FN
(MAFPVALUEARGS ARGS)
RCTXT1]
(MAFSIDEDl ARGS)
NIL NIL NIL ARGS)))
(X A sindle value
and no side-effects)
(RETURN RES1
(ALLNOVALUES (%X All arguments are
of INOVALUES-ture)
(SETQ RES
(SELECTQ (CLASSIFYNOVALUES FN)»
(EVALNOVALUES
(MAKEEXFRESSION
(CONS FN (MAFUNQUOTED' ARGS))
(EVALNOVALUES FN (
MAFNOVALUEARGS
ARGS))
(MAFSIDED ARGS)
NIL NIL NIL ARGS))

NIL)))
NIL)
COR
RES (% NIL try semantic
Frocedures)
(COND

(COR (ANDl (MEME CLASS (QUOTE (NOVALUES
ALLNOVALUES)))

(SETQ VAL
(AFFLY (GETF FN (QUOTE NOVALUEFN))
ARGS)»))
(AND (EQ CLASS (QUOTE DATATYFES))
(SETQ VAL

(AFFLY (GETF FN (QUOTE
DATATYFEFFN)Y)
ARGS)))
(SETQ VAL (AFFLY (GETF FN (QUOTE
TRYAFFLYFN))
(CONS RCTXT ARGS1]

(COND
((QWOTED' (SETQ RES
(MAKEEXFRESSION
(CONS FN (MAFUNQUOTEID ARGS))
VAL

(MAFSILDEDT ARGS)
NIL NIL NIL ARGS)))
(X A sindle value
and no side-effectsy
so0 return?
(RETURN RES1]
CAND
(TRUEORFALSECTXTF RCTXT)
(SETQ VAL (APFLY (GETPF FN (QUOTE CTXTFN))
(CONS RCTXT ARGS)))
(% TRUECTXT- and/or
FALSECTXT-
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information is
available)
(X Transfer
side-effect and
assidnment
information)
(RETURN
(FROG ((SETQLIST (CTXTSETQARGS ARGS)))
(RETURN (MAKEEXFPRESSION
(CONS FN (MAFUNQUOTEL ARGS))
(ANDL RES (GETVALUES RES))
(MAFSIDED ARGS)
(COLLECTTRUECTXT
(CAIIR VAL)
SETQLIST RCTXT)
(COLLECTFALSECTXT
(CADOR VAL)
SETQLIST RCTXT)
(CHECKSETQRARGS ARGS T1
COR RES (SETQ RES (CONID
((SETQ VAL (OR (VALUEDATATYFE FN ARGS)
(VALUESKNOWN FN)))
(% Value or datatyre
information of the
result is available)
(MAKEEXFRESSION (CONS FN (MAFUNQUOTED
ARGS))
VAL
(MAFSIDED ARGS)
NIL NIL NIL ARGS))
(T (CONS FN (MAFUNQUOTELD ARGS1]
(RETURN (MARKSIDED (MARKSETQR RES
(CHECKSETQARGS
ARGS T
(MAFSIDED ARGSI)

(ANDREOUCERAUX
CLAMEBDA (ARGS AL RCTXT)

(X % Reduces arduments to
ANL-exFressions.)

(FROG ((CTXT RCTXT)
(ALFACTXT (QUOTE ALFA1))
FALSECTXTVARSLIST REDARG (RES (CONS)))

(X CTXT and ALFACTXT used in ordeér to
chande context., FALSECTXTVARS is a list
of those variables for which
falsectrt-info is rossible and controls
context chandes.

RES holds the new reduced ardument

list.)

(CONI
((NULL ARGS)
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(RETURN NIL)))
LOP CCOND
((NULL (CDR ARGS))
(RETURN
(CAR (TCONC RES (REDFORMX
(CAR ARGS)
AL
(ANDCTXT (QUOTE BETA)
RCTXT ALFACTXT2

[SETQ REDARG (REDFORMX (CAR ARGS)

AL
(SETQ CTXT
(ANDCTXT ALFACTXT CTXT1
CCOND

L (KNOWNFALSE RELDI'ARG) (X A FALSE ARG is
found. Skir rest of
ARGS)

(RETURN (CAR (TCONC RES REDARG1]

L (KNOWNTRUE REDARG) (X A TRUE ARG is
found. If no
side~eefects remove
it)

(COND

((SIDED REDARG)
(TCONC RES REDARG]
(T (TCONC RES RELARG)
(AND (FALSECTXTF RCTXT)
(FIX-FALSECTXT-IN-ANL]

(SETQ AL (ADNDVALTRUECTXT REDARG AL))
(SETQ@ ARGS (CDR ARGS))
(GO LOFI1)

(ANDIFY
CLAMEDA (L RCTXT)

(X L is reduced ards in an
ANL-exrression A new ANID-exrression is
built upr and stored in 3
QUOTEL-exrression)

(CONLD
CONULL LD
™
((NULL (CDR L))
(CAR L))

((KNOWNTRUE (CAR L)) (x If first ARG is

TRUEs break it into
a FROGN)
(FROGNIFY (LIST (CAR L)
(ANOIFY (CDR L)
RCTXT))

RCTXT))

(T
(FROG ((RES (TCONC NIL (QUOTE AND)))

LASTSIDEFOS TRUECTXTLIST FALSECTXTLIST
SETQLIST (FIRSTFORM T))
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(X The resulted AND-exrression is built
up in res. Lastsideros roints out last
ARG rerformind a3 side-effect used if the
thole exrressions always will be FALSE.)

(X Try to calculate
FALSECTXT-element if
in FALSE branch
cortext)
(AN (FALSECTXTF RCTXT)
(SETQ FALSECTXTLIST (COLLANDFALSECTXT
L))
LOF (X NCOWC next
ardument to the
AND-exPression)
(TLCONC RES (QUOTE ANIN
(UNQUOTED (CAR L))
(X Check if
side—-effect occurrs)
(AND' (SIDED (CAR L))
(SETQ LASTSIDEFOS (CDLR RES)))
(¥ Save information
for the
TRUECTXT-element)
(AND (TRUECTXTF RCTXT)
(CHECKTRUECTXT)) (% Save information
about assidrnments)
(CHECKSETQ (CAR L)
(COND
(FIRSTFORM (SETQ FIRSTFORM NIL)
T

CCOND
((NULL (¢CDR L)) (¥ Create the new
QUOTELI-exFression?
(RETURN
(MAKERUOTED
(CONIL
((NOVALUECTXTF RCTXT)
Ok Inm
NOVALUE-conte:xt.
Further reductions
can be rerformed)
(COND

CLASTSIDEFOS
(RFIL.ACDO LLASTSIDEFOS NIL)>
(CONIt
((CODI'AR RES)
(CAR RES))
(T (CADAR RES1
(T NILD))
L (KNOWNFALSE (CAR L))
(k Value of
AND-exrression is
FALSE. More
reductions can be
rerformed)

(COND
((NULL. LASTSIDEFOS)
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(CAR L))
(T (RFLACD LASTSIDEFOS

(LIST NIL))

(COND
((CDODDAR RES)
(CAR RES))

(T (CADAR RES1
(T (CAR RES)))
CAND (VALUECTXTF RCTXT)
(VALUEL' (CAR L))
(MARKEFALSEALSO
(GETVALUES (CAR L1
NIL
(ANl LASTSILEFOS (QUOTE :SIDIE))
(ANLI!' (TRUECTXTF RCTXT)
(NOT (KNOWNFALSE (CAR L)))
(CTXTLISTRED TRUECTXTLIST))
(AND (FALSECTXTF RCTXT)
(CTXTLISTRED FALSECTXTLIST))
SETQRLISTI
(SETQ L. (CDR L))
(GO LOF1)
)

(PUTFROFS AND' REDUCER LCLAMEOA (FORM AL RCTXTX)
(X RCTXTx CAN BRE RESET RY
ANDCTXT)
(ANDIFY (ANDREDUCERAUX
(CDR FORM)
AL RCTXTX)
RCTXTXx1)



Transfomations performed by the and-reducer

(AND) > T
(AND a) > a
(AND a; ... a re. an) + (AND a; ... ay_q 4y oo an)

if a, 1s known to be true
and Pperforms no side-effects

{AND a a + (AND a a

X!

1 e A - an) 1 0
if a, is known to be false
(AND a; a; ... an) + (PROGN ay (AND a, --. an))
if a, is known to be true
and berforms a side-effect
(AND a; ... @ ... an) + (AND a; ... 3 NIL)
if a_ is known to be false and
441 to a, performs no side-effects
(AND a; ... a,_, (AND b, ... bm) a e a )~
»~ (AND a; ... a, _, by ... b a
In a novalue-context
(AND a; .e.oap ... an) + (AND a, ... ak)

if a_ is known to be false and
2,41 to a, perform no side-effects
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APPENDIX VI
EXAMPLES FROM CHAPTER 6 RUN THROUGH THE REDFUN-2 PROGRAM

In this appendix we will show som examples from chapter 6 run
through the REDFUN-2 program. These examples are marked as

(EX 4) in that chapter and corresponds to EX 4 among the print
outs.
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0K 0008 20K 20 0K KK HOR K JOK KKK KK K K K K K kK
EX 1 (SECTION 6.3)
00 88 K K HK KK R R 0K 38K K KKK I KKK KKK K

FORM=
CAND (EQ X Y)
(COND' ( (NUMBERF X)
(FOO X))
(T (SETQ Z (FIE X))
(SETQ V (QUOTE BH1]

AL=
(Y + (IVALUE . &))

CONTEXT=VTF

REDUCED FORM=
CANI (EQ X (QUOTE A))
(FROGN (SETQR Z (FIE (QUOTE A)))
(SETQ V (QUOTE E1]

VALUES=
(IVALUES . (NIL E))

SIDE-EFFECT=YES

TRUECTXT=
(V . (ISETQVALUE . (!VALUE . B)))
(Z + NOERIN)
(X + (IVALUE . A))

FALSECTXT=
(X o+ C(INOVALUES . (A)))

ASSIGNINFO=
(V . (LADDVALUE . (IVALUE .+ B)))
(Z + (!ADDVALUE + NOEIN))

K 0K 20K K KK KK K K K KKK KKK K K KK OK K K ¥ K IOk
EX 2 (SECTION 6.4.3)
2HOKO R OK KR KK KK KK KK KK KKK KK 3KOKOKOK XK KK K K XKk

FORM=
(EQ X Y)

A=
(X + (IVALUES . (A F)))
(Y + (IVALUES . (C I

CONTEXT=V

REDUCETD FORM=
NI



249

0000000 00 85200 KOK KK 0 K K 3K KKK K K K KKK KKK K
EX 3 (SECTION 6.4.3)
005K OHOK K 0 KKK N KKK K KKK IR OKOK KKK KK HOK K XK

FORM=
(EQ X Y)

AL=
(X + (IVALUES . (A ER)))
(Y . (SVALUES . (A C)))

CONTEXT=V

REDUCED FORM=
(EQ X Y)

000K KK KRN KK KKK 50K K K K K XOKKOK 0K NOKOK 0K 0K K IOK
EX 4 (SECTION 6.4.3)
K R0OKOKOKOK I OOK K K K KK KKK OK 30K KKK XOKOKOK XK K SOKIOK K K

FORM=
(EQ X Y)
AL=

(X + (3VALUES . (E C)))

(Y . C(INOVALUES . (A F C)))

CONTEXT=V

REDUCED FORM=
NIL

0K KK K R KKK K KOK K KKK KK K K K JOKOIHOK KKK K K K K K ok k
EX 5 (SECTION 6.4.3)
KK KKK AR K K KOKKOK OKKOKOR KOKOKOIOK 0K 0K OK 0K K K0K

FORM=
(MEME X (QUOTE (A IN))

Al =
(X + C(INOVALUES . (A B C T

CONTEXT:=Y

REDUCED FORM=
NIL
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00 K KK KK KKK 3 KOKOHOKIOIOKHCIOKOK K 3OK K KK K KOK KOk 0K
EX & (SECTION 6.4.3)
0K KK OKOK K HOK KK K K ORI ONOKOIOKOIOKOKOK XOKOK NOKOK KKK 0K

FORM=
(EQ X (QUOTE A))

L=
(X . (:DATATYPE . INTEGER))

CONTEXT=V

REDUCED FORM=
NIL

KRR K0 2 3 OKOK KK K OKOKOKOK K OKOKOKOKOK K KKK K XOKOK
EX 7 (SECTION 6.5.3)
HOKOK KKK AR OK XK KKK KKK KON KK K KK IOK XOK X0K 0k Ok

FORM=
(CONLI' ((EQ X (QUOTE A))
(F1 X))
((MEME X (QUOTE (A E)))
(F2 X))
((EQ X (QUOTE D))
(F3 X))
(T (F4 X)))

AL=
(X + (IVALUES + (A B C)))

CONTEXT=V

REDUCED FORM=
CCOND ((EQ X (QUOTE A))
(F1 (QUOTE A)))
((MEMB X (QUOTE (A B)))
(F2 (QUOTE E)))
(T (F4 (QUOTE C1
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K IR K K 0K KKK KK KOKKOROKOKIOK XK KK KOK KK XOKOK0K K
EX 8 (SECTION 6.5.5.2)
0K NOKOKOK KKK K KKK NOKOK KK KKK KKK K KK 3KOK KKK 0K

FORM=
(CONDI ((EQ X 3)
T)
((EQ X 7)
NIL)
(T YY)
AL=

CONTEXT=VTF

REDUCED FORM=
(COND ((EQ X 5)
™
((EQ X 7)

NIL)
(T Y))

SIDE-EFFECT=NO

TRUECTXT=
(X + (INOVALUES . (7)))

FALSECTXT=
(X o+ C(INOVALUES . (2)))
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30K KK K KKK KK KKK KK K K 30K KK K KOK K KOIOKOKOIOKOKOK
EX 9 (SECTION 4.5:5.3)
0K KKK KK KKK K KKK KKK ORI KKK KKK K KKK K

FORM=

(CONDF ((EQ X 3
NIL)
((EQ X 5)
(EQ Y 3))
((EQ Y 3)
™
(T NILY)

AL=

CONTEXT=VTF

REDUCED FORM=

(CONIN ((EQ X 3)
NIL)
((EQ X &)
(EQ Y 5))
((EQ Y 3)
)
(T NIL))

SINE-EFFECT=NO
TRUECTXT=

(X + C(INOVALUES . (3)))
(Y « tVAaLUES « (5 3)))
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0K KKK N KKK 0K KKK KKK KKK IR K KKK K KK
EX 10 (SECTION 6.6)
RN R KOK 38 K 2 K 308 IK K I 8 K 2 K 3K K K 0 8K 280K 0O 80K

FORM=
(MEME (SETQR X (QUOTE A))
(CONS (SETQ Y (QUOTE C))
Z))

AL=
(Z + (IVALUE . (B A)))

CONTEXT=V

REDUCED FORM=

(FROGN (SETQ X (QUOTE A))
(SETQ@ Y (QUOTE C)»)
(QUOTE (A)))

VALUES=
(IVALUE . (A))

SIDE-EFFECT=YES

ASSIGNINFO=
(Y « (IVALUE . C))
(X o (IVALUE .+ A))

AR K K N JOKOK KKK K KK KK 3K 0K K OKOKOKOKOKOK K XK K K K
EX 11 (SECTION 6.7.2)
AROK KKK K KKK OK KK K OKOKOKOKOKOK K K OKOK K HOK XOKOK K XK K K 0K X

FORM=

(COND ((EQ X Y)
(SETQ Y o)
(FOO X Y)»)
(T (FIE Y)))

Al.=

CONTEXT=V

REDUCED FORM-=

(COND (CEQ X Y)
(SETQ Y %)
(FOO X 5))
(T (FIE Y)))

SIDE-EFFECT=YES

ASSIGNINFO=
(Y . (IADDVALUE .+ (IVALUE . 5)))
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KKK K OK 30K OKOKKOKKHOK KK KKK KK KK IOK K KK KK JOK
EX 12 (SECTION 6.7.2)
KKK KKK N KOK KK KOK K K K K 5K KK K KKK K JOKJOKOKOK K

FORM=
(CONDI ((NULL XD
(FOO Y)»)
((EQ X (SETQ Y 3))
(FIE X Y))
(T (FUM Y)))

AlL=

CONTEXT=V

REDUCED FORM=
(COND C((NULL X)
(FOO Y))
((EQ X (SETQ Y 3))
(FIE 5 5))
(T (FUM 5)))

SIDE-EFFECT=YES

ASSTGNINFO=
(Y « (PADDVALUE . (3VALUE . 5)))

0K ROROROKOIOROKOROK 0K KK OROR K K KOKOKOIOR I ORI OK IR KO K IOK KOk
EX 13 (SECTION 6.7.2)
HOKOK K 3K O OK KKK K OKOKIOK O K SOKOK 50K KK K KKK K 3K K K K0k

FORM=

(CONDI ((EQ X (SETQ Z 5))
(FOO X Z))
(T (FIE X Z3)))

AL ==

CONTEXT=V

REQUCED FORM:=

(CONL ((EQ X (SETQ Z 5))
(FOO 35 5))
(T (FIE X 35)))

SIDE-EFFECT=YES

ASSIGNINFO=
(Z « CIVALUE .+ 5
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K 0 0 HOK K 3NOK KKK KK KKK NOKOROKAOKKOK KKK XK KOk K K
EX 14 (SECTION 6.7.2)
K B K 3KOK R 8 8K K K 2K KKK 8K 2K K K K 380K 0OKIOK XK K0K

FORM=

(ANl (EQ X (SETQ Y 35))
(FOO X Z))

AL=

CONTEXT=V

REDUCED FORM=
(AND (EQ X (SETQ@ Y 35))
(FOO S 2))

SIDE-EFFECT=YES

ASSIGNINFO=
(Y + (IVALUE . 3))

KK K OROK KK KOKKOK K KK K 3K 8 K K KK KR OK K K OK K OKOKOK K KOk

EX 15 (SECTION 6.7.2)
HOK K 0K K KKK K 35K K KK K K OKOKIOKIOK MK XK K JOKOIOK JOK X

FORM=

(AND' (OR L (SETQ Y 5))
(FOO Y))

AL=

CONTEXT=V

REDUCELD FORM=
(AND (OR L (SETQ Y 5))
(FOO Y))

SIDE-EFFECT=YES

ASSIGNINFO=
(Y . (JADDVALUE . (3VALUE .+ S)))
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A8 K K ROKOK R KKK KK KK OKOKOK K OKOKORKOK KK KK KK KKK
EX 16 (SECTION 6.7.2)
HOKOK K KKK K KK KK 0O KK K K K KK KCK0K K JOK 0K HOK KK KOk

FORM=
(COND' CCNULL XD
(SETQ Y 1))

(T (SETQ Y 3)))

Al.=

CONTEXT=V

RETNUCEL FORM=
(COND' CCNULL XD
(SETQ Y 1))
(CEQ X Y)
(SETQ Y 2))
(T (SETQ Y 3)))

VALUES=
(IVALUES + (3 2 1))

SIDE-EFFECT=YES

ASSIGNINFO=
(Y « (IVALUES . (1 2 3)))
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00 KKK OKOKOI K KK KKK K OKOKOKOR KKK KKK KK KOk
EX 17 (SECTION 6.7.2)
JHOKHOK K 3K 38 0 N8 K K 50K R IR K KK K KK K K 8 KOK OK 0K HOK0K

FORM=
(COND ¢-:(NULL X)
(SETQR Y 1))
(CEQ X Y)
(SETQ Y 2))
((FOO (SETQ@ Y 3))
(FIE X Y»)
(T (FUM X Y)))
al=
CONTEXT=V

REDUCED FORM=
(COND ((NULL X)
(SETQ Y 1))
((EQ X Y)
(SETQ Y 2))
((FOO (SETQ Y 3))
(FIE X 3))
(T (FUM X 3)))

SIDE-EFFECT=YES

ASSTGNINF D=
(Y .+ (IVALUES . (1 2 3»))
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3000 0C8O8OK 50K KKK KKK KK IOK KKK K K KKK KKK K
EX 18 (SECTION 6.7.2.1)
HOK KM KN KK KR OKOK KKK HOKOKIOKOK KKK NCIOK K K

FORM=

(COND ((SETQ X NIL))
((FUT A B NIL))
((FOO X)
(SETQ Y T)»
((SETQ Y NIL)
(T (FUM X Y)))

AL=

CONTEXT=V

REDUCELD FORM=
CFROGN (SETQ X NIL)
(FUT A R NIL)
(COND ((FOO NIL)
(SETQR Y T))
((SETQ Y NIL))
(T (FUM NIL NIL3J

SIDE-EFFECT=YES
ASSIGNINFO=
(Y « (3VALUES .+ (T NIL)))
(X « (VALUE .+ NIL))
0K KKK O HOR KKK IR KK I KKK K k5 oK K K KK oK K KK KKK K K
EX 19 (SECTION 6.7.2.2)
RO KKK KK KKK K KK KO KKK K 3 K 80K KK JOKOKOK K KOKKOKOK 0K

FORM=
(SETQ X 5

AlL.=

CONTEXT=V

REDUCELD FORM=
(SETQ X 5)

VALUESG=
CSVALUE « 5D

SIDE~EFFECT=YES

ASSIGNINFO=
(X « (IVALUE . 5))
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00 5K HOKOK K K K KKK 30K IR K KO 208 K 38 K K KO0 K KK IOKOK 0K
EX 20 (SECTION 6.7.2.2)
RN NN IR K 00K KKK K IOKOK K KKK OIOKIOK KK K K

FORM=
(FOO (CONS (SETQ X A)
E)
(SETQ Y NIL))

AL=

CONTEXT=V

REDUCED FORM==
(FOO (CONS (SETQ X A)
B)
(SETQ Y NIL))

SIDE-EFFECT=YES

ASSIGNINFO=
(Y + (IVALUE . NIL)
(X o+ NOBRIN)

0K K OKOK K OROKOK K OR KKK K K 3K K ORI K XK 0K KK KO0K K 0K
EX 21 (SECTION 6.7.4)
KB 0K A KCKOROK K KKK K KRR OKOIOK K OIOR K HOKOIOKOIOKOKOKOK

F ORMs=

(SET (SETQ VAR (QUOTE X))
10)

Al=

CONTEXT=Y

REDUCED FORM=
(FROGN (SETQ VAR (QUOTE X))
(SETQ X 10))

VAL UES==
CtVUALUE o 10D

SIDE-EFFECT=YES
ASSTEGNINF O

(X« CVALUE + 10))
(VAR .« (IVALUE .+ X))
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KK KK K 3K KK KK KK K HOK KKK XK K K 6 0K 50K O3 OK X K0k K K
EX 22 (SECTION 6.7.4)
80K 2K 0K KOK R KK KK K KOK K KK KO KK K KK K 30K KK K 0K K K

FORM=
(FROGN CCOND ((FOO X)
(SETQ@ VAR (QUOTE A)))
((FIE X)
(SETQ VAR (QUOTE E)))
(T (SETQR VAR (QUOTE C1
(SET VAR 10))

AL=

CONTEXT=V

RETIUCED FORM=
(FROGN CCONL ((FOO X)
(SETQ VAR (QUOTE A)))
((FIE X)
(SETQ VAR (QUOTE E)))
(T (SETQ VAR (QUOTE CJ
(SET VAR 10))

VALUES=
(IVALUE . 10)

SIDE-EFFECT=YES

ASSIGNINFO=
(A . CIADDVALUE .+ (IVALUE . 10)))
(B . (SAODOVALUE . (IVALUE . 10)))
(C « (¢ADLVALUE . (IVALUE . 10)))
(VAR + (IVALUES . (A R C)))
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